Tzu-Chia Chen, Iskandar Muda, Rabia Salman, Baydaa Abed Hussein, Khusniddin Fakhriddinovich Uktamov, Mohammed Yousif Oudah Al-Muttar
{"title":"提出了一种多周期枢纽定位与分配模型,并与多目标帝国主义竞争算法进行了比较","authors":"Tzu-Chia Chen, Iskandar Muda, Rabia Salman, Baydaa Abed Hussein, Khusniddin Fakhriddinovich Uktamov, Mohammed Yousif Oudah Al-Muttar","doi":"10.2478/fcds-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract Recently, air pollution has received much attention as a result of reflections on environmental issues. Accordingly, the hub location problem (HLP) seeks to find the optimal location of hub facilities and allocate points for them to meet the demands between source-destination pairs. Thus, in this study, decisions related to location and allocation in a hub network are reviewed and a multi-objective model is proposed for locating and allocating capacity-building facilities at different time periods over a planning horizon. The objective functions of the model presented in this study are to minimize costs, reduce air pollution by diminishing fuel consumption, and maximize job opportunities. In order to solve the given model, the General Algebraic Modeling System (GAMS) along with innovative algorithms are utilized. The results presented a multi-objective sustainable model for full-covering HLP, and provided access to a hub network with minimum transport costs, fuel consumption, and GHG (greenhouse gas) emissions, and maximum job opportunities in each planning horizon utilizing MOICA (multi-objective imperialist competitive algorithm) and GAMS to solve the proposed model. The study also assessed the performance of the proposed algorithms with the aid of the QM, MID, SM, and NSP indicators, acquired from comparing the proposed meta-heuristic algorithm based on some indicators, proving the benefit and efficiency of MOICA in all cases.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"374 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presenting a Model for Locating and Allocating Multi-Period Hubs and Comparing It With a Multi-Objective Imperialist Competitive Algorithm\",\"authors\":\"Tzu-Chia Chen, Iskandar Muda, Rabia Salman, Baydaa Abed Hussein, Khusniddin Fakhriddinovich Uktamov, Mohammed Yousif Oudah Al-Muttar\",\"doi\":\"10.2478/fcds-2023-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, air pollution has received much attention as a result of reflections on environmental issues. Accordingly, the hub location problem (HLP) seeks to find the optimal location of hub facilities and allocate points for them to meet the demands between source-destination pairs. Thus, in this study, decisions related to location and allocation in a hub network are reviewed and a multi-objective model is proposed for locating and allocating capacity-building facilities at different time periods over a planning horizon. The objective functions of the model presented in this study are to minimize costs, reduce air pollution by diminishing fuel consumption, and maximize job opportunities. In order to solve the given model, the General Algebraic Modeling System (GAMS) along with innovative algorithms are utilized. The results presented a multi-objective sustainable model for full-covering HLP, and provided access to a hub network with minimum transport costs, fuel consumption, and GHG (greenhouse gas) emissions, and maximum job opportunities in each planning horizon utilizing MOICA (multi-objective imperialist competitive algorithm) and GAMS to solve the proposed model. The study also assessed the performance of the proposed algorithms with the aid of the QM, MID, SM, and NSP indicators, acquired from comparing the proposed meta-heuristic algorithm based on some indicators, proving the benefit and efficiency of MOICA in all cases.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2023-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2023-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Presenting a Model for Locating and Allocating Multi-Period Hubs and Comparing It With a Multi-Objective Imperialist Competitive Algorithm
Abstract Recently, air pollution has received much attention as a result of reflections on environmental issues. Accordingly, the hub location problem (HLP) seeks to find the optimal location of hub facilities and allocate points for them to meet the demands between source-destination pairs. Thus, in this study, decisions related to location and allocation in a hub network are reviewed and a multi-objective model is proposed for locating and allocating capacity-building facilities at different time periods over a planning horizon. The objective functions of the model presented in this study are to minimize costs, reduce air pollution by diminishing fuel consumption, and maximize job opportunities. In order to solve the given model, the General Algebraic Modeling System (GAMS) along with innovative algorithms are utilized. The results presented a multi-objective sustainable model for full-covering HLP, and provided access to a hub network with minimum transport costs, fuel consumption, and GHG (greenhouse gas) emissions, and maximum job opportunities in each planning horizon utilizing MOICA (multi-objective imperialist competitive algorithm) and GAMS to solve the proposed model. The study also assessed the performance of the proposed algorithms with the aid of the QM, MID, SM, and NSP indicators, acquired from comparing the proposed meta-heuristic algorithm based on some indicators, proving the benefit and efficiency of MOICA in all cases.