关于三角形的双色着色游戏

IF 1.8 4区 管理学 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Naoki Matsumoto
{"title":"关于三角形的双色着色游戏","authors":"Naoki Matsumoto","doi":"10.1051/ro/2023162","DOIUrl":null,"url":null,"abstract":"In this paper, we study bichromatic coloring game on a disk triangulation, which is introduced by Aichholzer et al. in 2005. They proved that if a disk triangulation has at most two inner vertices, then the second player can force a tie in the bichromatic coloring game on the disk triangulation. We prove that the same statement holds for any disk triangulation with at most four inner vertices, and that the bound of the number of inner vertices is the best possible. Furthermore, we consider the game on topological triangulations.","PeriodicalId":54509,"journal":{"name":"Rairo-Operations Research","volume":"67 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bichromatic coloring game on triangulations\",\"authors\":\"Naoki Matsumoto\",\"doi\":\"10.1051/ro/2023162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study bichromatic coloring game on a disk triangulation, which is introduced by Aichholzer et al. in 2005. They proved that if a disk triangulation has at most two inner vertices, then the second player can force a tie in the bichromatic coloring game on the disk triangulation. We prove that the same statement holds for any disk triangulation with at most four inner vertices, and that the bound of the number of inner vertices is the best possible. Furthermore, we consider the game on topological triangulations.\",\"PeriodicalId\":54509,\"journal\":{\"name\":\"Rairo-Operations Research\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rairo-Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023162\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rairo-Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023162","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由Aichholzer等人于2005年提出的圆盘三角剖分上的双色着色游戏。他们证明,如果一个圆盘三角形最多有两个内部顶点,那么第二个玩家可以在圆盘三角形的双色着色游戏中强行打平。我们证明了相同的命题适用于任何至多有四个内顶点的圆盘三角剖分,并且内顶点的数目界是可能的最佳界。进一步,我们考虑了拓扑三角剖分上的博弈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bichromatic coloring game on triangulations
In this paper, we study bichromatic coloring game on a disk triangulation, which is introduced by Aichholzer et al. in 2005. They proved that if a disk triangulation has at most two inner vertices, then the second player can force a tie in the bichromatic coloring game on the disk triangulation. We prove that the same statement holds for any disk triangulation with at most four inner vertices, and that the bound of the number of inner vertices is the best possible. Furthermore, we consider the game on topological triangulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rairo-Operations Research
Rairo-Operations Research 管理科学-运筹学与管理科学
CiteScore
3.60
自引率
22.20%
发文量
206
审稿时长
>12 weeks
期刊介绍: RAIRO-Operations Research is an international journal devoted to high-level pure and applied research on all aspects of operations research. All papers published in RAIRO-Operations Research are critically refereed according to international standards. Any paper will either be accepted (possibly with minor revisions) either submitted to another evaluation (after a major revision) or rejected. Every effort will be made by the Editorial Board to ensure a first answer concerning a submitted paper within three months, and a final decision in a period of time not exceeding six months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信