石墨烯纳米片中亚晶格状态的不平衡

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
H Yorikawa
{"title":"石墨烯纳米片中亚晶格状态的不平衡","authors":"H Yorikawa","doi":"10.1088/2399-6528/ad0022","DOIUrl":null,"url":null,"abstract":"Abstract The energy states of π -electrons in a graphene nanoflake obtained from graphene, a well-known bipartite lattice or honeycomb lattice of carbon atoms, are studied using the tight-binding method. It is reported that the sublattice imbalance Δ N of the entire graphene nanoflake including vacancy clusters, which characterizes the electronic states, consists of those of the outer and inner edges. In nonzero-energy states, the electrons are evenly distributed between the sublattices A and B, regardless of the value of Δ N . In contrast, zero-energy states are ∣Δ N ∣-fold degenerate states where the electrons are unevenly distributed on either sublattice A or sublattice B. Occasionally, large or specific graphene nanoflakes have substantial zero-energy states, which are mixed states of the nonzero-energy states and zero-energy states.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sublattice imbalance of states in graphene nanoflakes\",\"authors\":\"H Yorikawa\",\"doi\":\"10.1088/2399-6528/ad0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The energy states of π -electrons in a graphene nanoflake obtained from graphene, a well-known bipartite lattice or honeycomb lattice of carbon atoms, are studied using the tight-binding method. It is reported that the sublattice imbalance Δ N of the entire graphene nanoflake including vacancy clusters, which characterizes the electronic states, consists of those of the outer and inner edges. In nonzero-energy states, the electrons are evenly distributed between the sublattices A and B, regardless of the value of Δ N . In contrast, zero-energy states are ∣Δ N ∣-fold degenerate states where the electrons are unevenly distributed on either sublattice A or sublattice B. Occasionally, large or specific graphene nanoflakes have substantial zero-energy states, which are mixed states of the nonzero-energy states and zero-energy states.\",\"PeriodicalId\":47089,\"journal\":{\"name\":\"Journal of Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用紧密结合方法研究了石墨烯纳米片中π电子的能态。石墨烯是碳原子的二部晶格或蜂窝晶格。据报道,包含空位团簇的整个石墨烯纳米片的亚晶格不平衡Δ N由外边缘和内边缘的亚晶格不平衡组成,这是表征电子态的特征。在非零能态中,电子均匀地分布在亚晶格A和B之间,与Δ N的值无关。相比之下,零能态是∣Δ N∣折叠简并态,其中电子不均匀地分布在亚晶格A或亚晶格b上。偶尔,大型或特定的石墨烯纳米片具有大量的零能态,它们是非零能态和零能态的混合态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sublattice imbalance of states in graphene nanoflakes
Abstract The energy states of π -electrons in a graphene nanoflake obtained from graphene, a well-known bipartite lattice or honeycomb lattice of carbon atoms, are studied using the tight-binding method. It is reported that the sublattice imbalance Δ N of the entire graphene nanoflake including vacancy clusters, which characterizes the electronic states, consists of those of the outer and inner edges. In nonzero-energy states, the electrons are evenly distributed between the sublattices A and B, regardless of the value of Δ N . In contrast, zero-energy states are ∣Δ N ∣-fold degenerate states where the electrons are unevenly distributed on either sublattice A or sublattice B. Occasionally, large or specific graphene nanoflakes have substantial zero-energy states, which are mixed states of the nonzero-energy states and zero-energy states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信