分数阶约束系统的WKB近似量化

Q2 Mathematics
{"title":"分数阶约束系统的WKB近似量化","authors":"","doi":"10.18576/amis/170519","DOIUrl":null,"url":null,"abstract":"In this paper the constrained systems with two primary first class constraints are studied using fractional Lagrangian, after that we find the fractional Hamiltonian and the corresponding Hamilton Jacobi equation. Using separation of variables technique, we can find the action function S this function helps us to formulate the wave function which describe the behavior of our systems also from the action function S we can find the equations of motion and the corresponding momenta in fractional form. This work is illustrated using one example.","PeriodicalId":49266,"journal":{"name":"Applied Mathematics & Information Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization of Fractional Constrained Systems with WKB Approximation\",\"authors\":\"\",\"doi\":\"10.18576/amis/170519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the constrained systems with two primary first class constraints are studied using fractional Lagrangian, after that we find the fractional Hamiltonian and the corresponding Hamilton Jacobi equation. Using separation of variables technique, we can find the action function S this function helps us to formulate the wave function which describe the behavior of our systems also from the action function S we can find the equations of motion and the corresponding momenta in fractional form. This work is illustrated using one example.\",\"PeriodicalId\":49266,\"journal\":{\"name\":\"Applied Mathematics & Information Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics & Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18576/amis/170519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics & Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18576/amis/170519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文利用分数阶拉格朗日研究了具有两个一级约束的系统,得到了分数阶哈密顿量和相应的哈密顿雅可比方程。利用分离变量技术,我们可以找到作用函数S,这个函数帮助我们形成描述系统行为的波函数,从作用函数S我们可以找到分数形式的运动方程和相应的动量。用一个例子来说明这项工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization of Fractional Constrained Systems with WKB Approximation
In this paper the constrained systems with two primary first class constraints are studied using fractional Lagrangian, after that we find the fractional Hamiltonian and the corresponding Hamilton Jacobi equation. Using separation of variables technique, we can find the action function S this function helps us to formulate the wave function which describe the behavior of our systems also from the action function S we can find the equations of motion and the corresponding momenta in fractional form. This work is illustrated using one example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics & Information Sciences
Applied Mathematics & Information Sciences Mathematics-Numerical Analysis
CiteScore
2.10
自引率
0.00%
发文量
85
审稿时长
5.3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信