差分进化算法在实验数据识别中的应用

IF 1.2 Q3 ENGINEERING, MECHANICAL
Łukasz Maciejewski, Wojciech Myszka, Grażyna Ziętek
{"title":"差分进化算法在实验数据识别中的应用","authors":"Łukasz Maciejewski, Wojciech Myszka, Grażyna Ziętek","doi":"10.24425/ame.2007.131561","DOIUrl":null,"url":null,"abstract":"In the paper, the authors present the approach to modelling of austenitic steel hardening basing on the Frederick-Armstrong’s rule and Chaboche elastic-plastic material model with mixed hardening. Non-linear uniaxial constitutive equations are derived from more general relations with the assumption of an appropriate evolution of back stress. The aim of the paper is to propose a robust and efficient identification method of a well known material model. A typical LCF strain-controlled test was conducted for selected amplitudes of total strain. Continuous measurements of instant stress and total strain values were performed. Life time of a specimen, signals amplitudes and load frequency were also recorded. Based on the measurement, identification of constitutive equation parameters was performed. The goal was to obtain a model that describes, including hardening phenomenon, a material behaviour during the experiment until the material failure. As a criterion of optimisation of the model least square projection accuracy of the material response was selected. Several optimisation methods were examined. Finally, the differential evolution method was selected as the most efficient one. The method was compared to standard optimisation methods available in the MATLAB environment. Significant decrease of computation time was achieved as all the optimisation procedures were run parallel on a computer cluster.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of differential evolution algorithm for identification of experimental data\",\"authors\":\"Łukasz Maciejewski, Wojciech Myszka, Grażyna Ziętek\",\"doi\":\"10.24425/ame.2007.131561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, the authors present the approach to modelling of austenitic steel hardening basing on the Frederick-Armstrong’s rule and Chaboche elastic-plastic material model with mixed hardening. Non-linear uniaxial constitutive equations are derived from more general relations with the assumption of an appropriate evolution of back stress. The aim of the paper is to propose a robust and efficient identification method of a well known material model. A typical LCF strain-controlled test was conducted for selected amplitudes of total strain. Continuous measurements of instant stress and total strain values were performed. Life time of a specimen, signals amplitudes and load frequency were also recorded. Based on the measurement, identification of constitutive equation parameters was performed. The goal was to obtain a model that describes, including hardening phenomenon, a material behaviour during the experiment until the material failure. As a criterion of optimisation of the model least square projection accuracy of the material response was selected. Several optimisation methods were examined. Finally, the differential evolution method was selected as the most efficient one. The method was compared to standard optimisation methods available in the MATLAB environment. Significant decrease of computation time was achieved as all the optimisation procedures were run parallel on a computer cluster.\",\"PeriodicalId\":45083,\"journal\":{\"name\":\"Archive of Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ame.2007.131561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ame.2007.131561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of differential evolution algorithm for identification of experimental data
In the paper, the authors present the approach to modelling of austenitic steel hardening basing on the Frederick-Armstrong’s rule and Chaboche elastic-plastic material model with mixed hardening. Non-linear uniaxial constitutive equations are derived from more general relations with the assumption of an appropriate evolution of back stress. The aim of the paper is to propose a robust and efficient identification method of a well known material model. A typical LCF strain-controlled test was conducted for selected amplitudes of total strain. Continuous measurements of instant stress and total strain values were performed. Life time of a specimen, signals amplitudes and load frequency were also recorded. Based on the measurement, identification of constitutive equation parameters was performed. The goal was to obtain a model that describes, including hardening phenomenon, a material behaviour during the experiment until the material failure. As a criterion of optimisation of the model least square projection accuracy of the material response was selected. Several optimisation methods were examined. Finally, the differential evolution method was selected as the most efficient one. The method was compared to standard optimisation methods available in the MATLAB environment. Significant decrease of computation time was achieved as all the optimisation procedures were run parallel on a computer cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive of Mechanical Engineering
Archive of Mechanical Engineering ENGINEERING, MECHANICAL-
CiteScore
1.70
自引率
14.30%
发文量
0
审稿时长
15 weeks
期刊介绍: Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信