{"title":"用中性面概念研究弹性地基上功能梯度板的静力性能","authors":"","doi":"10.24425/ame.2020.131706","DOIUrl":null,"url":null,"abstract":"In this study, static behaviors of functionally graded plates resting on Winkler-Pasternak elastic foundation using the four-variable refined theory and the physical neutral surface concept is reported. The four-variable refined theory assumes that the transverse shear strain has a parabolic distribution across the plate’s thickness, thus, there is no need to use the shear correction factor. The material properties of the plate vary continuously and smoothly according to the thickness direction by a power-law distribution. The geometrical middle surface of the functionally graded plate selected in computations is very popular in the existing literature. By contrast, in this study, the physical neutral surface of the plate is used. Based on the four-variable refined plate theory and the principle of virtual work, the governing equations of the plate are derived. Next, an analytical solution for the functionally graded plate resting on the Winkler-Pasternak elastic foundation is solved using the Navier’s procedure. In numerical investigations, a comparison of the static behaviors of the functionally graded plate between several models of displacement field using the physical neutral surface is given, and parametric studies are also presented.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"465 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept\",\"authors\":\"\",\"doi\":\"10.24425/ame.2020.131706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, static behaviors of functionally graded plates resting on Winkler-Pasternak elastic foundation using the four-variable refined theory and the physical neutral surface concept is reported. The four-variable refined theory assumes that the transverse shear strain has a parabolic distribution across the plate’s thickness, thus, there is no need to use the shear correction factor. The material properties of the plate vary continuously and smoothly according to the thickness direction by a power-law distribution. The geometrical middle surface of the functionally graded plate selected in computations is very popular in the existing literature. By contrast, in this study, the physical neutral surface of the plate is used. Based on the four-variable refined plate theory and the principle of virtual work, the governing equations of the plate are derived. Next, an analytical solution for the functionally graded plate resting on the Winkler-Pasternak elastic foundation is solved using the Navier’s procedure. In numerical investigations, a comparison of the static behaviors of the functionally graded plate between several models of displacement field using the physical neutral surface is given, and parametric studies are also presented.\",\"PeriodicalId\":45083,\"journal\":{\"name\":\"Archive of Mechanical Engineering\",\"volume\":\"465 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ame.2020.131706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ame.2020.131706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Static behaviour of functionally graded plates resting on elastic foundations using neutral surface concept
In this study, static behaviors of functionally graded plates resting on Winkler-Pasternak elastic foundation using the four-variable refined theory and the physical neutral surface concept is reported. The four-variable refined theory assumes that the transverse shear strain has a parabolic distribution across the plate’s thickness, thus, there is no need to use the shear correction factor. The material properties of the plate vary continuously and smoothly according to the thickness direction by a power-law distribution. The geometrical middle surface of the functionally graded plate selected in computations is very popular in the existing literature. By contrast, in this study, the physical neutral surface of the plate is used. Based on the four-variable refined plate theory and the principle of virtual work, the governing equations of the plate are derived. Next, an analytical solution for the functionally graded plate resting on the Winkler-Pasternak elastic foundation is solved using the Navier’s procedure. In numerical investigations, a comparison of the static behaviors of the functionally graded plate between several models of displacement field using the physical neutral surface is given, and parametric studies are also presented.
期刊介绍:
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.