人工粗糙通道太阳能空气加热器的热性能系数评价

IF 1.2 Q3 ENGINEERING, MECHANICAL
{"title":"人工粗糙通道太阳能空气加热器的热性能系数评价","authors":"","doi":"10.24425/ame.2021.137048","DOIUrl":null,"url":null,"abstract":"Heat transfer augmentation has become the utmost industrial desire. Turbulence promoters seems to be a better option for better heat transfer but at the expense of enormous pressure drop. In the current study, experimental optimization of heat transfer and pressure drop in various configurations of ribbed and corrugated surfaces on the bottom wall of the Solar Air Heater channel, having aspect ratio of 26:5 was performed. The results were evaluated in terms of enhancement in heat transfer (Nu/Nu s ) , friction factor ratio ( f / f s ) and thermal performance factor ( η ) . Three different cases and nine configurations with a pitch to rib/corrugation height ratio of 4.0 were studied. Case A consists of a smooth, continuous square rib, inline and staggered broken ribs. Case B comprises 30 ◦ , 45 ◦ , 60 ◦ and 90 ◦ trapezoidal corrugated geometries while case C is the comparison of smooth, wavy corrugated and the best configurations of cases A and B. The results show that rectangular duct with staggered broken ribs and trapezoidal corrugation at 45 ◦ are the best configurations for case A and B, respectively. The 45 ◦ corrugated configuration is the best one amongst all, with values of 1.53, 1.5 and 1.33% for Nu/Nu s , f / f s and η respectively.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"1974 5","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Evaluation of thermal performance factor for solar air heaters with artificially roughened channels\",\"authors\":\"\",\"doi\":\"10.24425/ame.2021.137048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat transfer augmentation has become the utmost industrial desire. Turbulence promoters seems to be a better option for better heat transfer but at the expense of enormous pressure drop. In the current study, experimental optimization of heat transfer and pressure drop in various configurations of ribbed and corrugated surfaces on the bottom wall of the Solar Air Heater channel, having aspect ratio of 26:5 was performed. The results were evaluated in terms of enhancement in heat transfer (Nu/Nu s ) , friction factor ratio ( f / f s ) and thermal performance factor ( η ) . Three different cases and nine configurations with a pitch to rib/corrugation height ratio of 4.0 were studied. Case A consists of a smooth, continuous square rib, inline and staggered broken ribs. Case B comprises 30 ◦ , 45 ◦ , 60 ◦ and 90 ◦ trapezoidal corrugated geometries while case C is the comparison of smooth, wavy corrugated and the best configurations of cases A and B. The results show that rectangular duct with staggered broken ribs and trapezoidal corrugation at 45 ◦ are the best configurations for case A and B, respectively. The 45 ◦ corrugated configuration is the best one amongst all, with values of 1.53, 1.5 and 1.33% for Nu/Nu s , f / f s and η respectively.\",\"PeriodicalId\":45083,\"journal\":{\"name\":\"Archive of Mechanical Engineering\",\"volume\":\"1974 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ame.2021.137048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ame.2021.137048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 10

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of thermal performance factor for solar air heaters with artificially roughened channels
Heat transfer augmentation has become the utmost industrial desire. Turbulence promoters seems to be a better option for better heat transfer but at the expense of enormous pressure drop. In the current study, experimental optimization of heat transfer and pressure drop in various configurations of ribbed and corrugated surfaces on the bottom wall of the Solar Air Heater channel, having aspect ratio of 26:5 was performed. The results were evaluated in terms of enhancement in heat transfer (Nu/Nu s ) , friction factor ratio ( f / f s ) and thermal performance factor ( η ) . Three different cases and nine configurations with a pitch to rib/corrugation height ratio of 4.0 were studied. Case A consists of a smooth, continuous square rib, inline and staggered broken ribs. Case B comprises 30 ◦ , 45 ◦ , 60 ◦ and 90 ◦ trapezoidal corrugated geometries while case C is the comparison of smooth, wavy corrugated and the best configurations of cases A and B. The results show that rectangular duct with staggered broken ribs and trapezoidal corrugation at 45 ◦ are the best configurations for case A and B, respectively. The 45 ◦ corrugated configuration is the best one amongst all, with values of 1.53, 1.5 and 1.33% for Nu/Nu s , f / f s and η respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive of Mechanical Engineering
Archive of Mechanical Engineering ENGINEERING, MECHANICAL-
CiteScore
1.70
自引率
14.30%
发文量
0
审稿时长
15 weeks
期刊介绍: Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信