{"title":"具有粗糙边界噪声的随机演化方程","authors":"Alexandra Neamţu, Tim Seitz","doi":"10.1007/s42985-023-00268-6","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the pathwise well-posedness of stochastic partial differential equations perturbed by multiplicative Neumann boundary noise, such as fractional Brownian motion for $$H\\in (1/3,1/2].$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>]</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> Combining functional analytic tools with the controlled rough path approach, we establish global existence of solutions and flows for such equations. For Dirichlet boundary noise we obtain similar results for smoother noise, i.e. in the Young regime.","PeriodicalId":74818,"journal":{"name":"SN partial differential equations and applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic evolution equations with rough boundary noise\",\"authors\":\"Alexandra Neamţu, Tim Seitz\",\"doi\":\"10.1007/s42985-023-00268-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate the pathwise well-posedness of stochastic partial differential equations perturbed by multiplicative Neumann boundary noise, such as fractional Brownian motion for $$H\\\\in (1/3,1/2].$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>]</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> </mml:math> Combining functional analytic tools with the controlled rough path approach, we establish global existence of solutions and flows for such equations. For Dirichlet boundary noise we obtain similar results for smoother noise, i.e. in the Young regime.\",\"PeriodicalId\":74818,\"journal\":{\"name\":\"SN partial differential equations and applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN partial differential equations and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42985-023-00268-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN partial differential equations and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42985-023-00268-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic evolution equations with rough boundary noise
Abstract We investigate the pathwise well-posedness of stochastic partial differential equations perturbed by multiplicative Neumann boundary noise, such as fractional Brownian motion for $$H\in (1/3,1/2].$$ H∈(1/3,1/2]. Combining functional analytic tools with the controlled rough path approach, we establish global existence of solutions and flows for such equations. For Dirichlet boundary noise we obtain similar results for smoother noise, i.e. in the Young regime.