底漆与聚丙烯预处理技术的比较分析

IF 2.9 4区 材料科学 Q2 ENGINEERING, CHEMICAL
Henryk Szramowski, Marek Piotr Krzemiński
{"title":"底漆与聚丙烯预处理技术的比较分析","authors":"Henryk Szramowski, Marek Piotr Krzemiński","doi":"10.1080/00218464.2023.2276110","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe test polypropylene substrates obtained from the original plastic car parts for Škoda Superb were subjected to 10 pre-treatment techniques: solvent cleaning (isopropanol, xylene), mechanical abrasion, immersion in a chromic acid mixture, flame activation, atmospheric and low-pressure plasma treatment, corona discharges and the application of two different primers (also called adhesion promoters). One of the primers, based on chlorinated polypropylene, was commercially available, while the other was prepared in our laboratory using polypropylene grafted with maleic anhydride. The test substrates were characterized using contact angle measurement for designation of surface free energy, Atomic Force Microscope (AFM) for roughness analysis, Scanning Electron Microscopy (SEM) for surface topography, and Energy Dispersive X-ray Spectrometry (EDX) for surface oxygen and contamination analysis. The suitability of the surface preparation methods in the industry was evaluated through peel strength tests (adhesive bonding process) and cross-cut tests (painting process). Not all tested methods were effective in increasing adhesion, especially in the adhesive bonding process, and even fewer in the painting process. However, some of them were suitable for both applications. The use of primers was found to be crucial.KEYWORDS: Plasticspolypropyleneadhesionsurface pre-treatmentadhesion promotersprimers AcknowledgmentsThe authors thank: Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes for conducting plasma and corona discharge trials; Maflow Plastics Poland for receiving polypropylene samples and adhesive tapes.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":"58 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of primers and alternative polypropylene pre-treatment techniques\",\"authors\":\"Henryk Szramowski, Marek Piotr Krzemiński\",\"doi\":\"10.1080/00218464.2023.2276110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe test polypropylene substrates obtained from the original plastic car parts for Škoda Superb were subjected to 10 pre-treatment techniques: solvent cleaning (isopropanol, xylene), mechanical abrasion, immersion in a chromic acid mixture, flame activation, atmospheric and low-pressure plasma treatment, corona discharges and the application of two different primers (also called adhesion promoters). One of the primers, based on chlorinated polypropylene, was commercially available, while the other was prepared in our laboratory using polypropylene grafted with maleic anhydride. The test substrates were characterized using contact angle measurement for designation of surface free energy, Atomic Force Microscope (AFM) for roughness analysis, Scanning Electron Microscopy (SEM) for surface topography, and Energy Dispersive X-ray Spectrometry (EDX) for surface oxygen and contamination analysis. The suitability of the surface preparation methods in the industry was evaluated through peel strength tests (adhesive bonding process) and cross-cut tests (painting process). Not all tested methods were effective in increasing adhesion, especially in the adhesive bonding process, and even fewer in the painting process. However, some of them were suitable for both applications. The use of primers was found to be crucial.KEYWORDS: Plasticspolypropyleneadhesionsurface pre-treatmentadhesion promotersprimers AcknowledgmentsThe authors thank: Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes for conducting plasma and corona discharge trials; Maflow Plastics Poland for receiving polypropylene samples and adhesive tapes.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.\",\"PeriodicalId\":14778,\"journal\":{\"name\":\"Journal of Adhesion\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00218464.2023.2276110\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2276110","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要:从Škoda Superb原塑料汽车零件中获得的聚丙烯基材进行了10项预处理技术:溶剂清洗(异丙醇、二甲苯)、机械磨损、铬酸混合物浸泡、火焰活化、常压和低压等离子体处理、电晕放电和两种不同的底漆(也称为附着力促进剂)的应用。其中一种引物是基于氯化聚丙烯的市售引物,而另一种引物是在我们实验室用聚丙烯接枝马来酸酐制备的。使用接触角测量表征表面自由能,原子力显微镜(AFM)进行粗糙度分析,扫描电子显微镜(SEM)进行表面形貌分析,能量色散x射线光谱(EDX)进行表面氧和污染分析。通过剥离强度试验(胶粘接工艺)和横切试验(涂漆工艺)对工业表面制备方法的适用性进行了评价。并不是所有的测试方法都能有效地增加附着力,特别是在胶粘接过程中,在涂装过程中就更少了。然而,其中一些适用于这两种应用程序。引物的使用被认为是至关重要的。关键词:塑料聚丙烯粘接表面预处理粘接促进剂喷剂感谢:Łukasiewicz研究网络-高分子材料与染料工程研究所进行等离子体和电晕放电试验;Maflow塑料波兰接收聚丙烯样品和胶带。披露声明作者未报告潜在的利益冲突。本研究没有从公共、商业或非营利部门的资助机构获得任何特定的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of primers and alternative polypropylene pre-treatment techniques
ABSTRACTThe test polypropylene substrates obtained from the original plastic car parts for Škoda Superb were subjected to 10 pre-treatment techniques: solvent cleaning (isopropanol, xylene), mechanical abrasion, immersion in a chromic acid mixture, flame activation, atmospheric and low-pressure plasma treatment, corona discharges and the application of two different primers (also called adhesion promoters). One of the primers, based on chlorinated polypropylene, was commercially available, while the other was prepared in our laboratory using polypropylene grafted with maleic anhydride. The test substrates were characterized using contact angle measurement for designation of surface free energy, Atomic Force Microscope (AFM) for roughness analysis, Scanning Electron Microscopy (SEM) for surface topography, and Energy Dispersive X-ray Spectrometry (EDX) for surface oxygen and contamination analysis. The suitability of the surface preparation methods in the industry was evaluated through peel strength tests (adhesive bonding process) and cross-cut tests (painting process). Not all tested methods were effective in increasing adhesion, especially in the adhesive bonding process, and even fewer in the painting process. However, some of them were suitable for both applications. The use of primers was found to be crucial.KEYWORDS: Plasticspolypropyleneadhesionsurface pre-treatmentadhesion promotersprimers AcknowledgmentsThe authors thank: Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes for conducting plasma and corona discharge trials; Maflow Plastics Poland for receiving polypropylene samples and adhesive tapes.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Adhesion
Journal of Adhesion 工程技术-材料科学:综合
CiteScore
5.30
自引率
9.10%
发文量
55
审稿时长
1 months
期刊介绍: The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信