如何计算扩展Jacobi四次曲线上的等根?

IF 0.5 Q4 TELECOMMUNICATIONS
{"title":"如何计算扩展Jacobi四次曲线上的等根?","authors":"","doi":"10.24425/ijet.2022.139890","DOIUrl":null,"url":null,"abstract":"—Computing isogenies between elliptic curves is a significant part of post-quantum cryptography with many practical applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH algorithms). Comparing to other post-quantum algorithms, the main advantages of these protocols are smaller keys, the similar idea as in the ECDH, and a large basis of expertise about elliptic curves. The main disadvantage of the isogeny-based cryptosystems is their computational efficiency - they are slower than other post-quantum algorithms (e.g., lattice-based). That is why so much effort has been put into improving the hitherto known methods of computing isogenies between elliptic curves. In this paper, we present new formulas for computing isogenies between elliptic curves in the extended Jacobi quartic form with two methods: by transforming such curves into the short Weierstrass model, computing an isogeny in this form and then transforming back into an initial model or by computing an isogeny directly between two extended Jacobi quartics.","PeriodicalId":13922,"journal":{"name":"International Journal of Electronics and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Compute an Isogeny on the Extended Jacobi Quartic Curves?\",\"authors\":\"\",\"doi\":\"10.24425/ijet.2022.139890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Computing isogenies between elliptic curves is a significant part of post-quantum cryptography with many practical applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH algorithms). Comparing to other post-quantum algorithms, the main advantages of these protocols are smaller keys, the similar idea as in the ECDH, and a large basis of expertise about elliptic curves. The main disadvantage of the isogeny-based cryptosystems is their computational efficiency - they are slower than other post-quantum algorithms (e.g., lattice-based). That is why so much effort has been put into improving the hitherto known methods of computing isogenies between elliptic curves. In this paper, we present new formulas for computing isogenies between elliptic curves in the extended Jacobi quartic form with two methods: by transforming such curves into the short Weierstrass model, computing an isogeny in this form and then transforming back into an initial model or by computing an isogeny directly between two extended Jacobi quartics.\",\"PeriodicalId\":13922,\"journal\":{\"name\":\"International Journal of Electronics and Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronics and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ijet.2022.139890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronics and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ijet.2022.139890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Compute an Isogeny on the Extended Jacobi Quartic Curves?
—Computing isogenies between elliptic curves is a significant part of post-quantum cryptography with many practical applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH algorithms). Comparing to other post-quantum algorithms, the main advantages of these protocols are smaller keys, the similar idea as in the ECDH, and a large basis of expertise about elliptic curves. The main disadvantage of the isogeny-based cryptosystems is their computational efficiency - they are slower than other post-quantum algorithms (e.g., lattice-based). That is why so much effort has been put into improving the hitherto known methods of computing isogenies between elliptic curves. In this paper, we present new formulas for computing isogenies between elliptic curves in the extended Jacobi quartic form with two methods: by transforming such curves into the short Weierstrass model, computing an isogeny in this form and then transforming back into an initial model or by computing an isogeny directly between two extended Jacobi quartics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信