论知识汇编对特征模型分析的益处

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chico Sundermann, Elias Kuiter, Tobias Heß, Heiko Raab, Sebastian Krieter, Thomas Thüm
{"title":"论知识汇编对特征模型分析的益处","authors":"Chico Sundermann,&nbsp;Elias Kuiter,&nbsp;Tobias Heß,&nbsp;Heiko Raab,&nbsp;Sebastian Krieter,&nbsp;Thomas Thüm","doi":"10.1007/s10472-023-09906-6","DOIUrl":null,"url":null,"abstract":"<div><p>Feature models are commonly used to specify the valid configurations of product lines. As industrial feature models are typically complex, researchers and practitioners employ various automated analyses to study the configuration spaces. Many of these automated analyses require that numerous complex computations are executed on the same feature model, for example by querying a SAT or <span>#</span>SATsolver. With knowledge compilation, feature models can be compiled in a one-time effort to a target language that enables polynomial-time queries for otherwise more complex problems. In this work, we elaborate on the potential of employing knowledge compilation on feature models. First, we gather various feature-model analyses and study their computational complexity with regard to the underlying computational problem and the number of solver queries required for the respective analysis. Second, we collect knowledge-compilation target languages and map feature-model analyses to the languages that make the analysis tractable. Third, we empirically evaluate publicly available knowledge compilers to further inspect the potential benefits of knowledge-compilation target languages.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 5","pages":"1013 - 1050"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10472-023-09906-6.pdf","citationCount":"0","resultStr":"{\"title\":\"On the benefits of knowledge compilation for feature-model analyses\",\"authors\":\"Chico Sundermann,&nbsp;Elias Kuiter,&nbsp;Tobias Heß,&nbsp;Heiko Raab,&nbsp;Sebastian Krieter,&nbsp;Thomas Thüm\",\"doi\":\"10.1007/s10472-023-09906-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature models are commonly used to specify the valid configurations of product lines. As industrial feature models are typically complex, researchers and practitioners employ various automated analyses to study the configuration spaces. Many of these automated analyses require that numerous complex computations are executed on the same feature model, for example by querying a SAT or <span>#</span>SATsolver. With knowledge compilation, feature models can be compiled in a one-time effort to a target language that enables polynomial-time queries for otherwise more complex problems. In this work, we elaborate on the potential of employing knowledge compilation on feature models. First, we gather various feature-model analyses and study their computational complexity with regard to the underlying computational problem and the number of solver queries required for the respective analysis. Second, we collect knowledge-compilation target languages and map feature-model analyses to the languages that make the analysis tractable. Third, we empirically evaluate publicly available knowledge compilers to further inspect the potential benefits of knowledge-compilation target languages.</p></div>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"92 5\",\"pages\":\"1013 - 1050\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10472-023-09906-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10472-023-09906-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09906-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

特征模型通常用于指定产品线的有效配置。由于工业特征模型通常比较复杂,研究人员和从业人员采用各种自动分析方法来研究配置空间。其中许多自动分析需要在同一特征模型上执行大量复杂计算,例如查询 SAT 或 #SATsolver。有了知识编译,特征模型就可以一次性编译成目标语言,从而实现对其他更复杂问题的多项式时间查询。在这项工作中,我们将详细阐述在特征模型上采用知识编译的潜力。首先,我们收集了各种特征模型分析,并根据基础计算问题和相应分析所需的求解器查询次数,研究了它们的计算复杂度。其次,我们收集知识编译目标语言,并将特征模型分析映射到能使分析变得简单的语言中。第三,我们对公开可用的知识编译器进行了实证评估,以进一步检验知识编译目标语言的潜在优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the benefits of knowledge compilation for feature-model analyses

Feature models are commonly used to specify the valid configurations of product lines. As industrial feature models are typically complex, researchers and practitioners employ various automated analyses to study the configuration spaces. Many of these automated analyses require that numerous complex computations are executed on the same feature model, for example by querying a SAT or #SATsolver. With knowledge compilation, feature models can be compiled in a one-time effort to a target language that enables polynomial-time queries for otherwise more complex problems. In this work, we elaborate on the potential of employing knowledge compilation on feature models. First, we gather various feature-model analyses and study their computational complexity with regard to the underlying computational problem and the number of solver queries required for the respective analysis. Second, we collect knowledge-compilation target languages and map feature-model analyses to the languages that make the analysis tractable. Third, we empirically evaluate publicly available knowledge compilers to further inspect the potential benefits of knowledge-compilation target languages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信