{"title":"薄壁梁夹芯板在不同荷载布置和连接数下的试验研究","authors":"","doi":"10.24425/ace.2022.143045","DOIUrl":null,"url":null,"abstract":": Inthepapertherethelaboratorytestsofinteractionbetweenthin-walledbeamsofthe 𝑍 cross-section and the sandwich panels with PIR foam core are presented. The different numbers of connectors (0, 4, and 8) were used to connect the sandwich panels with the thin-walled beams. Furthermore, the parallel and perpendicular to the longitudinal axis of the thin-walled beam load arrangement was analysed. The research provides a qualitative and quantitative comparison of the mentioned experiments using the ultimate capacity, the deformation capacity, and the stiffness. In the second part of the paper, the numerical analysis of the thin-walled beam was also performed. The beam was modelled as a shell element and loaded in two ways, which corresponded to the loading scenario during laboratory tests (uniformly distributed and concentrated loads). The results of the numerical calculations of the beam without lateral stabilization were compared with the laboratory results of the beam stabilized by the sandwich panels.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":"11 9","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of sandwich panels supported by thin-walled beams under various load arrangements and number of connectors\",\"authors\":\"\",\"doi\":\"10.24425/ace.2022.143045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Inthepapertherethelaboratorytestsofinteractionbetweenthin-walledbeamsofthe 𝑍 cross-section and the sandwich panels with PIR foam core are presented. The different numbers of connectors (0, 4, and 8) were used to connect the sandwich panels with the thin-walled beams. Furthermore, the parallel and perpendicular to the longitudinal axis of the thin-walled beam load arrangement was analysed. The research provides a qualitative and quantitative comparison of the mentioned experiments using the ultimate capacity, the deformation capacity, and the stiffness. In the second part of the paper, the numerical analysis of the thin-walled beam was also performed. The beam was modelled as a shell element and loaded in two ways, which corresponded to the loading scenario during laboratory tests (uniformly distributed and concentrated loads). The results of the numerical calculations of the beam without lateral stabilization were compared with the laboratory results of the beam stabilized by the sandwich panels.\",\"PeriodicalId\":45753,\"journal\":{\"name\":\"Archives of Civil Engineering\",\"volume\":\"11 9\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ace.2022.143045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2022.143045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental investigation of sandwich panels supported by thin-walled beams under various load arrangements and number of connectors
: Inthepapertherethelaboratorytestsofinteractionbetweenthin-walledbeamsofthe 𝑍 cross-section and the sandwich panels with PIR foam core are presented. The different numbers of connectors (0, 4, and 8) were used to connect the sandwich panels with the thin-walled beams. Furthermore, the parallel and perpendicular to the longitudinal axis of the thin-walled beam load arrangement was analysed. The research provides a qualitative and quantitative comparison of the mentioned experiments using the ultimate capacity, the deformation capacity, and the stiffness. In the second part of the paper, the numerical analysis of the thin-walled beam was also performed. The beam was modelled as a shell element and loaded in two ways, which corresponded to the loading scenario during laboratory tests (uniformly distributed and concentrated loads). The results of the numerical calculations of the beam without lateral stabilization were compared with the laboratory results of the beam stabilized by the sandwich panels.
期刊介绍:
ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.