叠加集成机器学习算法在心脏病预测中的应用

IF 0.6 Q3 MATHEMATICS
Ruhi Fatima, Sabeena Kazi, Asifa Tassaddiq, Nilofer Farhat, Humera Naaz, Sumera Jabeen
{"title":"叠加集成机器学习算法在心脏病预测中的应用","authors":"Ruhi Fatima, Sabeena Kazi, Asifa Tassaddiq, Nilofer Farhat, Humera Naaz, Sumera Jabeen","doi":"10.37256/cm.4420232390","DOIUrl":null,"url":null,"abstract":"Mathematics and statistics have a significant impact on the advancement of most trending sciences like machine learning, artificial intelligence, and data science. In this article, we use the Stacking Ensemble Machine Learning Algorithm (SEMLA) to predict heart disease, considering accuracy (acc), diagnostic odds ratio (Dor), F1_score, Matthews correlation coefficient (Mcc), receiver operating characteristics-area under curve (roc-auc), and logloss (log_loss). The data is analyzed using classification learning techniques. We have considered sex, age, cholesterol, fasting blood sugar, the highest rate of heartbeat, type of chest pain, resting electrocardiogram (ECG), angina, depression induced by exercise, peak exercise measurement, major vessel number, a disorder in the blood, and a target attribute to represent the presence and absence of disorders. The approach used allows for the prediction of heart disease and the management of worst-case scenarios. In comparison with the existing models, our proposed model has outperformed other models with an accuracy of 97.28%.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"12 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacking Ensemble Machine Learning Algorithm with an Application to Heart Disease Prediction\",\"authors\":\"Ruhi Fatima, Sabeena Kazi, Asifa Tassaddiq, Nilofer Farhat, Humera Naaz, Sumera Jabeen\",\"doi\":\"10.37256/cm.4420232390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mathematics and statistics have a significant impact on the advancement of most trending sciences like machine learning, artificial intelligence, and data science. In this article, we use the Stacking Ensemble Machine Learning Algorithm (SEMLA) to predict heart disease, considering accuracy (acc), diagnostic odds ratio (Dor), F1_score, Matthews correlation coefficient (Mcc), receiver operating characteristics-area under curve (roc-auc), and logloss (log_loss). The data is analyzed using classification learning techniques. We have considered sex, age, cholesterol, fasting blood sugar, the highest rate of heartbeat, type of chest pain, resting electrocardiogram (ECG), angina, depression induced by exercise, peak exercise measurement, major vessel number, a disorder in the blood, and a target attribute to represent the presence and absence of disorders. The approach used allows for the prediction of heart disease and the management of worst-case scenarios. In comparison with the existing models, our proposed model has outperformed other models with an accuracy of 97.28%.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

数学和统计学对机器学习、人工智能和数据科学等大多数热门科学的发展都有重大影响。在本文中,我们使用堆叠集成机器学习算法(SEMLA)来预测心脏病,考虑准确性(acc),诊断优势比(Dor), F1_score,马修斯相关系数(Mcc),受试者工作特征-曲线下面积(roc-auc)和logloss (log_loss)。使用分类学习技术对数据进行分析。我们考虑了性别、年龄、胆固醇、空腹血糖、最高心跳率、胸痛类型、静息心电图(ECG)、心绞痛、运动引起的抑郁、运动峰值测量、主要血管数、血液紊乱以及代表紊乱存在和不存在的目标属性。使用的方法可以预测心脏病和管理最坏的情况。与现有模型相比,我们提出的模型的准确率达到97.28%,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stacking Ensemble Machine Learning Algorithm with an Application to Heart Disease Prediction
Mathematics and statistics have a significant impact on the advancement of most trending sciences like machine learning, artificial intelligence, and data science. In this article, we use the Stacking Ensemble Machine Learning Algorithm (SEMLA) to predict heart disease, considering accuracy (acc), diagnostic odds ratio (Dor), F1_score, Matthews correlation coefficient (Mcc), receiver operating characteristics-area under curve (roc-auc), and logloss (log_loss). The data is analyzed using classification learning techniques. We have considered sex, age, cholesterol, fasting blood sugar, the highest rate of heartbeat, type of chest pain, resting electrocardiogram (ECG), angina, depression induced by exercise, peak exercise measurement, major vessel number, a disorder in the blood, and a target attribute to represent the presence and absence of disorders. The approach used allows for the prediction of heart disease and the management of worst-case scenarios. In comparison with the existing models, our proposed model has outperformed other models with an accuracy of 97.28%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信