{"title":"球墨铸铁中氧化物夹杂物作为生产四墨铸铁铸件的原料","authors":"Ł. Dyrlaga, D. Kopyciński, E. Guzik","doi":"10.24425/afe.2021.138663","DOIUrl":null,"url":null,"abstract":"This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"6 3","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxide Inclusions in Ductile Cast Iron as Starting Materials for Production SiMo Iron Castings\",\"authors\":\"Ł. Dyrlaga, D. Kopyciński, E. Guzik\",\"doi\":\"10.24425/afe.2021.138663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium\",\"PeriodicalId\":8301,\"journal\":{\"name\":\"Archives of Foundry Engineering\",\"volume\":\"6 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Foundry Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/afe.2021.138663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2021.138663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Oxide Inclusions in Ductile Cast Iron as Starting Materials for Production SiMo Iron Castings
This paper presents the study about defects found in industrial high silicon ductile iron. The microstructures were analysed using an optical microscope. Afterwards, a scanning electron microscope was used to analyse the chemical composition.The study also examined the origin of oxygen and what is the amount of oxygen in the cast iron.The amount of active oxygen was measured at two production processes. Firstly, at the end of melting process, and secondly, after the nodularization treatment. The research was carried out with different proportions of the raw materials. The focus was on determining the mechanism of the formation of slag defects to eliminate them in order to obtain ductile iron with increased silicon content of the highest possible quality. The research presented in this publication is a part of an implementation doctorate carried out in the METALPOL Foundry in Węgierska Górka (Poland). The presented research concerns the elaboration of initial parameters of liquid metal intended for processing into high-silicon ductile cast iron SiMo1000 type with aluminum and chromium
期刊介绍:
Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read