超级加泰隆尼亚数的代数解释

IF 0.6 4区 数学 Q3 MATHEMATICS
KEVIN LIMANTA
{"title":"超级加泰隆尼亚数的代数解释","authors":"KEVIN LIMANTA","doi":"10.1017/s0004972723001107","DOIUrl":null,"url":null,"abstract":"Abstract We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields $\\mathbb {F}$ of characteristic zero as a normalised $\\mathbb {F}$ -linear functional on $\\mathbb {F}[\\alpha _1, \\alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is $\\mathrm {SO}(2,\\mathbb {F})$ -invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers $$ \\begin{align*} S(m,n) = \\frac{(2m)!(2n)!}{m!n!(m+n)!} \\end{align*} $$ an algebraic interpretation in terms of values of this algebraic integral over some circle applied to the monomials $\\alpha _1^{2m}\\alpha _2^{2n}$ .","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"34 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN ALGEBRAIC INTERPRETATION OF THE SUPER CATALAN NUMBERS\",\"authors\":\"KEVIN LIMANTA\",\"doi\":\"10.1017/s0004972723001107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields $\\\\mathbb {F}$ of characteristic zero as a normalised $\\\\mathbb {F}$ -linear functional on $\\\\mathbb {F}[\\\\alpha _1, \\\\alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is $\\\\mathrm {SO}(2,\\\\mathbb {F})$ -invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers $$ \\\\begin{align*} S(m,n) = \\\\frac{(2m)!(2n)!}{m!n!(m+n)!} \\\\end{align*} $$ an algebraic interpretation in terms of values of this algebraic integral over some circle applied to the monomials $\\\\alpha _1^{2m}\\\\alpha _2^{2n}$ .\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723001107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将欧几里得几何中特征为零的一般域$\mathbb {F}$上任意圆C上的多项式积分的概念推广为$\mathbb {F}[\alpha _1, \alpha _2]$上的归一化$\mathbb {F}$ -线性泛函,该泛函将在C上求值为零的多项式映射为零,并且是$\mathrm {SO}(2,\mathbb {F})$ -不变的。这不仅使我们能够以一种初等的方式建立一个纯粹的代数积分理论,而且也给了超级加泰罗尼亚数$$ \begin{align*} S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!} \end{align*} $$一个应用于单项式$\alpha _1^{2m}\alpha _2^{2n}$上的代数积分值的代数解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN ALGEBRAIC INTERPRETATION OF THE SUPER CATALAN NUMBERS
Abstract We extend the notion of polynomial integration over an arbitrary circle C in the Euclidean geometry over general fields $\mathbb {F}$ of characteristic zero as a normalised $\mathbb {F}$ -linear functional on $\mathbb {F}[\alpha _1, \alpha _2]$ that maps polynomials that evaluate to zero on C to zero and is $\mathrm {SO}(2,\mathbb {F})$ -invariant. This allows us to not only build a purely algebraic integration theory in an elementary way, but also give the super Catalan numbers $$ \begin{align*} S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!} \end{align*} $$ an algebraic interpretation in terms of values of this algebraic integral over some circle applied to the monomials $\alpha _1^{2m}\alpha _2^{2n}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信