广义丢番图m元组的有效界

IF 0.6 4区 数学 Q3 MATHEMATICS
SAUNAK BHATTACHARJEE, ANUP B. DIXIT, DISHANT SAIKIA
{"title":"广义丢番图m元组的有效界","authors":"SAUNAK BHATTACHARJEE, ANUP B. DIXIT, DISHANT SAIKIA","doi":"10.1017/s0004972723001077","DOIUrl":null,"url":null,"abstract":"Abstract For $k\\geq 2$ and a nonzero integer n , a generalised Diophantine m -tuple with property $D_k(n)$ is a set of m positive integers $S = \\{a_1,a_2,\\ldots , a_m\\}$ such that $a_ia_j + n$ is a k th power for $1\\leq i< j\\leq m$ . Define $M_k(n):= \\text {sup}\\{|S| : S$ having property $D_k(n)\\}$ . Dixit et al . [‘Generalised Diophantine m -tuples’, Proc. Amer. Math. Soc. 150 (4) (2022), 1455–1465] proved that $M_k(n)=O(\\log n)$ , for a fixed k , as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$ . In particular, we show that for $k\\geq 2$ , $M_k(n) \\leq 3\\,\\phi (k) \\log n$ if n is sufficiently large compared to k .","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"90 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EFFECTIVE BOUND FOR GENERALISED DIOPHANTINE <i>m</i>-TUPLES\",\"authors\":\"SAUNAK BHATTACHARJEE, ANUP B. DIXIT, DISHANT SAIKIA\",\"doi\":\"10.1017/s0004972723001077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For $k\\\\geq 2$ and a nonzero integer n , a generalised Diophantine m -tuple with property $D_k(n)$ is a set of m positive integers $S = \\\\{a_1,a_2,\\\\ldots , a_m\\\\}$ such that $a_ia_j + n$ is a k th power for $1\\\\leq i< j\\\\leq m$ . Define $M_k(n):= \\\\text {sup}\\\\{|S| : S$ having property $D_k(n)\\\\}$ . Dixit et al . [‘Generalised Diophantine m -tuples’, Proc. Amer. Math. Soc. 150 (4) (2022), 1455–1465] proved that $M_k(n)=O(\\\\log n)$ , for a fixed k , as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$ . In particular, we show that for $k\\\\geq 2$ , $M_k(n) \\\\leq 3\\\\,\\\\phi (k) \\\\log n$ if n is sufficiently large compared to k .\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723001077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于$k\geq 2$和非零整数n,具有$D_k(n)$性质的广义丢芬图m元组是m个正整数$S = \{a_1,a_2,\ldots , a_m\}$的集合,使得$a_ia_j + n$是$1\leq i< j\leq m$的k次幂。定义具有$D_k(n)\}$属性的$M_k(n):= \text {sup}\{|S| : S$。Dixit等人。['泛化丢番图m -元组',Proc. american。数学。Soc. 150(4)(2022), 1455-1465]证明了$M_k(n)=O(\log n)$,对于固定k,随着n的变化。本文得到了$M_k(n)$的有效上界。特别地,我们证明了对于$k\geq 2$$M_k(n) \leq 3\,\phi (k) \log n$如果n比k足够大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN EFFECTIVE BOUND FOR GENERALISED DIOPHANTINE m-TUPLES
Abstract For $k\geq 2$ and a nonzero integer n , a generalised Diophantine m -tuple with property $D_k(n)$ is a set of m positive integers $S = \{a_1,a_2,\ldots , a_m\}$ such that $a_ia_j + n$ is a k th power for $1\leq i< j\leq m$ . Define $M_k(n):= \text {sup}\{|S| : S$ having property $D_k(n)\}$ . Dixit et al . [‘Generalised Diophantine m -tuples’, Proc. Amer. Math. Soc. 150 (4) (2022), 1455–1465] proved that $M_k(n)=O(\log n)$ , for a fixed k , as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$ . In particular, we show that for $k\geq 2$ , $M_k(n) \leq 3\,\phi (k) \log n$ if n is sufficiently large compared to k .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信