SAUNAK BHATTACHARJEE, ANUP B. DIXIT, DISHANT SAIKIA
{"title":"广义丢番图m元组的有效界","authors":"SAUNAK BHATTACHARJEE, ANUP B. DIXIT, DISHANT SAIKIA","doi":"10.1017/s0004972723001077","DOIUrl":null,"url":null,"abstract":"Abstract For $k\\geq 2$ and a nonzero integer n , a generalised Diophantine m -tuple with property $D_k(n)$ is a set of m positive integers $S = \\{a_1,a_2,\\ldots , a_m\\}$ such that $a_ia_j + n$ is a k th power for $1\\leq i< j\\leq m$ . Define $M_k(n):= \\text {sup}\\{|S| : S$ having property $D_k(n)\\}$ . Dixit et al . [‘Generalised Diophantine m -tuples’, Proc. Amer. Math. Soc. 150 (4) (2022), 1455–1465] proved that $M_k(n)=O(\\log n)$ , for a fixed k , as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$ . In particular, we show that for $k\\geq 2$ , $M_k(n) \\leq 3\\,\\phi (k) \\log n$ if n is sufficiently large compared to k .","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"90 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EFFECTIVE BOUND FOR GENERALISED DIOPHANTINE <i>m</i>-TUPLES\",\"authors\":\"SAUNAK BHATTACHARJEE, ANUP B. DIXIT, DISHANT SAIKIA\",\"doi\":\"10.1017/s0004972723001077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For $k\\\\geq 2$ and a nonzero integer n , a generalised Diophantine m -tuple with property $D_k(n)$ is a set of m positive integers $S = \\\\{a_1,a_2,\\\\ldots , a_m\\\\}$ such that $a_ia_j + n$ is a k th power for $1\\\\leq i< j\\\\leq m$ . Define $M_k(n):= \\\\text {sup}\\\\{|S| : S$ having property $D_k(n)\\\\}$ . Dixit et al . [‘Generalised Diophantine m -tuples’, Proc. Amer. Math. Soc. 150 (4) (2022), 1455–1465] proved that $M_k(n)=O(\\\\log n)$ , for a fixed k , as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$ . In particular, we show that for $k\\\\geq 2$ , $M_k(n) \\\\leq 3\\\\,\\\\phi (k) \\\\log n$ if n is sufficiently large compared to k .\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001077\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723001077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
AN EFFECTIVE BOUND FOR GENERALISED DIOPHANTINE m-TUPLES
Abstract For $k\geq 2$ and a nonzero integer n , a generalised Diophantine m -tuple with property $D_k(n)$ is a set of m positive integers $S = \{a_1,a_2,\ldots , a_m\}$ such that $a_ia_j + n$ is a k th power for $1\leq i< j\leq m$ . Define $M_k(n):= \text {sup}\{|S| : S$ having property $D_k(n)\}$ . Dixit et al . [‘Generalised Diophantine m -tuples’, Proc. Amer. Math. Soc. 150 (4) (2022), 1455–1465] proved that $M_k(n)=O(\log n)$ , for a fixed k , as n varies. In this paper, we obtain effective upper bounds on $M_k(n)$ . In particular, we show that for $k\geq 2$ , $M_k(n) \leq 3\,\phi (k) \log n$ if n is sufficiently large compared to k .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society