新型吖啶衍生物对斑马鱼幼鱼的设计、合成、评价及毒性研究

Q2 Pharmacology, Toxicology and Pharmaceutics
Remya R.S, Ramalakshmi Natarajan, Nalini Nagarajan
{"title":"新型吖啶衍生物对斑马鱼幼鱼的设计、合成、评价及毒性研究","authors":"Remya R.S, Ramalakshmi Natarajan, Nalini Nagarajan","doi":"10.2174/0115734072256561231008183612","DOIUrl":null,"url":null,"abstract":"Background: Alzheimer’s disease (AD) is a complex neurodegenerative condition for which a single protein-targeting medication is not enough to provide a cure. All the medications now available for AD are palliative. FDA has approved five medications for the treatment of AD, i.e., tacrine, donepezil, galantamine, rivastigmine, and memantine. Due to hepatotoxicity, tacrine is no longer utilized in clinical practice. Due to the lack of therapeutic efficiency of single-target medications and the multifaceted etiology of AD, multitarget-directed ligands have been developed. Objectives: The present research focused on incorporating a flavone nucleus into the amino group of 9-amino acridine nucleus to make it an acetylcholinesterase (AChE) and butyryl cholinesterase inhibitor (BuChE) with less toxicity Methods: We designed and synthesized ten flavone-substituted acridine derivatives and evaluated them for in vitro AChE and BuChE inhibitory activity. Molecular modeling studies were conducted using AutoDock Vina with hAChE (PDB ID: 4EY7) and hBuChE (PDB ID: 4TPK). The toxicity profile of the most active novel compound tested on zebrafish larvae for determining the liver and cardiac toxicity and LD50 value of the compound were determined. Results: In vitro AChE and BuChE inhibitory study by Ellman assay showed acceptable results. The compound AF2 showed the highest activity with an IC50 value of 0.99 ± 0.1 µM for AChE and 1.78 ± 0.19 for BuChE. The in vivo acute toxicity studies conducted on zebra fish larvae did not show cardiac and hepatotoxicity, and the LD50 value was found to be 1000 µL Conclusion: The results highlighted the AChE and BuChE inhibitory effects of the novel acridine-flavone hybrids, and they can be promising multitarget-directed ligands for AD.","PeriodicalId":10772,"journal":{"name":"Current Bioactive Compounds","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, Evaluation, and Toxicity Studies of Novel Acridine Derivatives in Zebra Fish Larvae\",\"authors\":\"Remya R.S, Ramalakshmi Natarajan, Nalini Nagarajan\",\"doi\":\"10.2174/0115734072256561231008183612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Alzheimer’s disease (AD) is a complex neurodegenerative condition for which a single protein-targeting medication is not enough to provide a cure. All the medications now available for AD are palliative. FDA has approved five medications for the treatment of AD, i.e., tacrine, donepezil, galantamine, rivastigmine, and memantine. Due to hepatotoxicity, tacrine is no longer utilized in clinical practice. Due to the lack of therapeutic efficiency of single-target medications and the multifaceted etiology of AD, multitarget-directed ligands have been developed. Objectives: The present research focused on incorporating a flavone nucleus into the amino group of 9-amino acridine nucleus to make it an acetylcholinesterase (AChE) and butyryl cholinesterase inhibitor (BuChE) with less toxicity Methods: We designed and synthesized ten flavone-substituted acridine derivatives and evaluated them for in vitro AChE and BuChE inhibitory activity. Molecular modeling studies were conducted using AutoDock Vina with hAChE (PDB ID: 4EY7) and hBuChE (PDB ID: 4TPK). The toxicity profile of the most active novel compound tested on zebrafish larvae for determining the liver and cardiac toxicity and LD50 value of the compound were determined. Results: In vitro AChE and BuChE inhibitory study by Ellman assay showed acceptable results. The compound AF2 showed the highest activity with an IC50 value of 0.99 ± 0.1 µM for AChE and 1.78 ± 0.19 for BuChE. The in vivo acute toxicity studies conducted on zebra fish larvae did not show cardiac and hepatotoxicity, and the LD50 value was found to be 1000 µL Conclusion: The results highlighted the AChE and BuChE inhibitory effects of the novel acridine-flavone hybrids, and they can be promising multitarget-directed ligands for AD.\",\"PeriodicalId\":10772,\"journal\":{\"name\":\"Current Bioactive Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioactive Compounds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734072256561231008183612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioactive Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734072256561231008183612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

背景:阿尔茨海默病(AD)是一种复杂的神经退行性疾病,单一的蛋白靶向药物不足以治愈。目前所有可用于阿尔茨海默病的药物都是姑息性的。FDA已经批准了5种治疗阿尔茨海默病的药物,即他卡因、多奈哌齐、加兰他明、利瓦司明和美金刚。由于肝毒性,他克林已不再用于临床。由于单靶点药物缺乏疗效和AD病因的多面性,多靶点定向配体被开发出来。目的:研究在9-氨基吖啶核的氨基中加入黄酮核,使其成为毒性较低的乙酰胆碱酯酶(AChE)和丁基胆碱酯酶抑制剂(BuChE)。方法:设计合成了10种黄酮取代吖啶衍生物,并对它们的AChE和BuChE体外抑制活性进行了评价。使用AutoDock Vina对hAChE (PDB ID: 4EY7)和hBuChE (PDB ID: 4TPK)进行分子建模研究。测定了对斑马鱼幼鱼肝、心毒性试验中活性最高的新型化合物的毒性谱和LD50值。结果:Ellman法对乙酰胆碱酯酶(AChE)和BuChE的体外抑制研究结果可接受。其中,化合物AF2对AChE的IC50值为0.99±0.1µM,对BuChE的IC50值为1.78±0.19µM。斑马鱼幼鱼体内急性毒性研究未显示出心脏和肝脏毒性,LD50值为1000µL。结论:新型吖啶酮-黄酮杂交体具有AChE和BuChE抑制作用,有望成为治疗AD的多靶点靶向配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Synthesis, Evaluation, and Toxicity Studies of Novel Acridine Derivatives in Zebra Fish Larvae
Background: Alzheimer’s disease (AD) is a complex neurodegenerative condition for which a single protein-targeting medication is not enough to provide a cure. All the medications now available for AD are palliative. FDA has approved five medications for the treatment of AD, i.e., tacrine, donepezil, galantamine, rivastigmine, and memantine. Due to hepatotoxicity, tacrine is no longer utilized in clinical practice. Due to the lack of therapeutic efficiency of single-target medications and the multifaceted etiology of AD, multitarget-directed ligands have been developed. Objectives: The present research focused on incorporating a flavone nucleus into the amino group of 9-amino acridine nucleus to make it an acetylcholinesterase (AChE) and butyryl cholinesterase inhibitor (BuChE) with less toxicity Methods: We designed and synthesized ten flavone-substituted acridine derivatives and evaluated them for in vitro AChE and BuChE inhibitory activity. Molecular modeling studies were conducted using AutoDock Vina with hAChE (PDB ID: 4EY7) and hBuChE (PDB ID: 4TPK). The toxicity profile of the most active novel compound tested on zebrafish larvae for determining the liver and cardiac toxicity and LD50 value of the compound were determined. Results: In vitro AChE and BuChE inhibitory study by Ellman assay showed acceptable results. The compound AF2 showed the highest activity with an IC50 value of 0.99 ± 0.1 µM for AChE and 1.78 ± 0.19 for BuChE. The in vivo acute toxicity studies conducted on zebra fish larvae did not show cardiac and hepatotoxicity, and the LD50 value was found to be 1000 µL Conclusion: The results highlighted the AChE and BuChE inhibitory effects of the novel acridine-flavone hybrids, and they can be promising multitarget-directed ligands for AD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Bioactive Compounds
Current Bioactive Compounds Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.90
自引率
0.00%
发文量
112
期刊介绍: The journal aims to provide comprehensive review articles on new bioactive compounds with proven activities in various biological screenings and pharmacological models with a special emphasis on stereoeselective synthesis. The aim is to provide a valuable information source of bioactive compounds synthesized or isolated, which can be used for further development of pharmaceuticals by industry and academia. The journal should prove to be essential reading for pharmacologists, natural product chemists and medicinal chemists who wish to be kept informed and up-to-date with the most important developments on new bioactive compounds of natural or synthetic origin, including their stereoeselective synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信