{"title":"新型吖啶衍生物对斑马鱼幼鱼的设计、合成、评价及毒性研究","authors":"Remya R.S, Ramalakshmi Natarajan, Nalini Nagarajan","doi":"10.2174/0115734072256561231008183612","DOIUrl":null,"url":null,"abstract":"Background: Alzheimer’s disease (AD) is a complex neurodegenerative condition for which a single protein-targeting medication is not enough to provide a cure. All the medications now available for AD are palliative. FDA has approved five medications for the treatment of AD, i.e., tacrine, donepezil, galantamine, rivastigmine, and memantine. Due to hepatotoxicity, tacrine is no longer utilized in clinical practice. Due to the lack of therapeutic efficiency of single-target medications and the multifaceted etiology of AD, multitarget-directed ligands have been developed. Objectives: The present research focused on incorporating a flavone nucleus into the amino group of 9-amino acridine nucleus to make it an acetylcholinesterase (AChE) and butyryl cholinesterase inhibitor (BuChE) with less toxicity Methods: We designed and synthesized ten flavone-substituted acridine derivatives and evaluated them for in vitro AChE and BuChE inhibitory activity. Molecular modeling studies were conducted using AutoDock Vina with hAChE (PDB ID: 4EY7) and hBuChE (PDB ID: 4TPK). The toxicity profile of the most active novel compound tested on zebrafish larvae for determining the liver and cardiac toxicity and LD50 value of the compound were determined. Results: In vitro AChE and BuChE inhibitory study by Ellman assay showed acceptable results. The compound AF2 showed the highest activity with an IC50 value of 0.99 ± 0.1 µM for AChE and 1.78 ± 0.19 for BuChE. The in vivo acute toxicity studies conducted on zebra fish larvae did not show cardiac and hepatotoxicity, and the LD50 value was found to be 1000 µL Conclusion: The results highlighted the AChE and BuChE inhibitory effects of the novel acridine-flavone hybrids, and they can be promising multitarget-directed ligands for AD.","PeriodicalId":10772,"journal":{"name":"Current Bioactive Compounds","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, Evaluation, and Toxicity Studies of Novel Acridine Derivatives in Zebra Fish Larvae\",\"authors\":\"Remya R.S, Ramalakshmi Natarajan, Nalini Nagarajan\",\"doi\":\"10.2174/0115734072256561231008183612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Alzheimer’s disease (AD) is a complex neurodegenerative condition for which a single protein-targeting medication is not enough to provide a cure. All the medications now available for AD are palliative. FDA has approved five medications for the treatment of AD, i.e., tacrine, donepezil, galantamine, rivastigmine, and memantine. Due to hepatotoxicity, tacrine is no longer utilized in clinical practice. Due to the lack of therapeutic efficiency of single-target medications and the multifaceted etiology of AD, multitarget-directed ligands have been developed. Objectives: The present research focused on incorporating a flavone nucleus into the amino group of 9-amino acridine nucleus to make it an acetylcholinesterase (AChE) and butyryl cholinesterase inhibitor (BuChE) with less toxicity Methods: We designed and synthesized ten flavone-substituted acridine derivatives and evaluated them for in vitro AChE and BuChE inhibitory activity. Molecular modeling studies were conducted using AutoDock Vina with hAChE (PDB ID: 4EY7) and hBuChE (PDB ID: 4TPK). The toxicity profile of the most active novel compound tested on zebrafish larvae for determining the liver and cardiac toxicity and LD50 value of the compound were determined. Results: In vitro AChE and BuChE inhibitory study by Ellman assay showed acceptable results. The compound AF2 showed the highest activity with an IC50 value of 0.99 ± 0.1 µM for AChE and 1.78 ± 0.19 for BuChE. The in vivo acute toxicity studies conducted on zebra fish larvae did not show cardiac and hepatotoxicity, and the LD50 value was found to be 1000 µL Conclusion: The results highlighted the AChE and BuChE inhibitory effects of the novel acridine-flavone hybrids, and they can be promising multitarget-directed ligands for AD.\",\"PeriodicalId\":10772,\"journal\":{\"name\":\"Current Bioactive Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioactive Compounds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734072256561231008183612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioactive Compounds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734072256561231008183612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Design, Synthesis, Evaluation, and Toxicity Studies of Novel Acridine Derivatives in Zebra Fish Larvae
Background: Alzheimer’s disease (AD) is a complex neurodegenerative condition for which a single protein-targeting medication is not enough to provide a cure. All the medications now available for AD are palliative. FDA has approved five medications for the treatment of AD, i.e., tacrine, donepezil, galantamine, rivastigmine, and memantine. Due to hepatotoxicity, tacrine is no longer utilized in clinical practice. Due to the lack of therapeutic efficiency of single-target medications and the multifaceted etiology of AD, multitarget-directed ligands have been developed. Objectives: The present research focused on incorporating a flavone nucleus into the amino group of 9-amino acridine nucleus to make it an acetylcholinesterase (AChE) and butyryl cholinesterase inhibitor (BuChE) with less toxicity Methods: We designed and synthesized ten flavone-substituted acridine derivatives and evaluated them for in vitro AChE and BuChE inhibitory activity. Molecular modeling studies were conducted using AutoDock Vina with hAChE (PDB ID: 4EY7) and hBuChE (PDB ID: 4TPK). The toxicity profile of the most active novel compound tested on zebrafish larvae for determining the liver and cardiac toxicity and LD50 value of the compound were determined. Results: In vitro AChE and BuChE inhibitory study by Ellman assay showed acceptable results. The compound AF2 showed the highest activity with an IC50 value of 0.99 ± 0.1 µM for AChE and 1.78 ± 0.19 for BuChE. The in vivo acute toxicity studies conducted on zebra fish larvae did not show cardiac and hepatotoxicity, and the LD50 value was found to be 1000 µL Conclusion: The results highlighted the AChE and BuChE inhibitory effects of the novel acridine-flavone hybrids, and they can be promising multitarget-directed ligands for AD.
Current Bioactive CompoundsPharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.90
自引率
0.00%
发文量
112
期刊介绍:
The journal aims to provide comprehensive review articles on new bioactive compounds with proven activities in various biological screenings and pharmacological models with a special emphasis on stereoeselective synthesis. The aim is to provide a valuable information source of bioactive compounds synthesized or isolated, which can be used for further development of pharmaceuticals by industry and academia. The journal should prove to be essential reading for pharmacologists, natural product chemists and medicinal chemists who wish to be kept informed and up-to-date with the most important developments on new bioactive compounds of natural or synthetic origin, including their stereoeselective synthesis.