研究一种新型镁合金的冶金、降解行为和力学特性

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Baraa H. Al Khaqani, Nawal Mohammed Dawood
{"title":"研究一种新型镁合金的冶金、降解行为和力学特性","authors":"Baraa H. Al Khaqani, Nawal Mohammed Dawood","doi":"10.12913/22998624/172749","DOIUrl":null,"url":null,"abstract":"Today, the use of magnesium alloys in medical applications as a decomposing material is extensive, so a new mag - nesium alloy Mg-2Al-1Nd was prepared by an investment-casting method in a medium protected from atmospheric oxygen. One of the rare elements, Nd, was added to improve the microstructural and mechanical properties and corrosion resistance in simulated blood plasma media. The XRF test determined the chemical characterization ele - ments, the SEM test was used to identify the distribution of phases and their shape inside the base before and after heat treatment, and the XRD test was conducted to determine the type of phases that formed and the effect of these phases on other properties was studied. Also, hardness was measured using Vickers microhardness, in which the improvement rate was 75%, and a compression test to determine the mechanical properties of the prepared alloy found that the modulus of elasticity was 42 GPa. To study its corrosive behavior inside the human body, a test was conducted on corrosion by the Tafel method to measure corrosion resistance in simulated blood plasma solution, Where the value of the corrosion rate of the alloy after the heat treatment became 0.089 mm/y and Rp equal 4.13 kΩ/cm 2 , These results made the new magnesium alloy a good candidate for use in temporary medical applications.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigate the Metallurgical, Degradation Behavior, and Mechanical Characteristics of a Novel Magnesium Alloy\",\"authors\":\"Baraa H. Al Khaqani, Nawal Mohammed Dawood\",\"doi\":\"10.12913/22998624/172749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the use of magnesium alloys in medical applications as a decomposing material is extensive, so a new mag - nesium alloy Mg-2Al-1Nd was prepared by an investment-casting method in a medium protected from atmospheric oxygen. One of the rare elements, Nd, was added to improve the microstructural and mechanical properties and corrosion resistance in simulated blood plasma media. The XRF test determined the chemical characterization ele - ments, the SEM test was used to identify the distribution of phases and their shape inside the base before and after heat treatment, and the XRD test was conducted to determine the type of phases that formed and the effect of these phases on other properties was studied. Also, hardness was measured using Vickers microhardness, in which the improvement rate was 75%, and a compression test to determine the mechanical properties of the prepared alloy found that the modulus of elasticity was 42 GPa. To study its corrosive behavior inside the human body, a test was conducted on corrosion by the Tafel method to measure corrosion resistance in simulated blood plasma solution, Where the value of the corrosion rate of the alloy after the heat treatment became 0.089 mm/y and Rp equal 4.13 kΩ/cm 2 , These results made the new magnesium alloy a good candidate for use in temporary medical applications.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12913/22998624/172749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/172749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigate the Metallurgical, Degradation Behavior, and Mechanical Characteristics of a Novel Magnesium Alloy
Today, the use of magnesium alloys in medical applications as a decomposing material is extensive, so a new mag - nesium alloy Mg-2Al-1Nd was prepared by an investment-casting method in a medium protected from atmospheric oxygen. One of the rare elements, Nd, was added to improve the microstructural and mechanical properties and corrosion resistance in simulated blood plasma media. The XRF test determined the chemical characterization ele - ments, the SEM test was used to identify the distribution of phases and their shape inside the base before and after heat treatment, and the XRD test was conducted to determine the type of phases that formed and the effect of these phases on other properties was studied. Also, hardness was measured using Vickers microhardness, in which the improvement rate was 75%, and a compression test to determine the mechanical properties of the prepared alloy found that the modulus of elasticity was 42 GPa. To study its corrosive behavior inside the human body, a test was conducted on corrosion by the Tafel method to measure corrosion resistance in simulated blood plasma solution, Where the value of the corrosion rate of the alloy after the heat treatment became 0.089 mm/y and Rp equal 4.13 kΩ/cm 2 , These results made the new magnesium alloy a good candidate for use in temporary medical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信