{"title":"利用Flownex模拟软件分析降低蔬菜芽生产能耗的潜力","authors":"Klaudia Słomczyńska, Paweł Mirek, Marcin Panowski","doi":"10.12913/22998624/170944","DOIUrl":null,"url":null,"abstract":"Using the waste energy generated in any production process is the one of possible ways of increasing energy effi - ciency. In the industrial cultivation of vegetable sprouts for food purposes, significant amounts of low-temperature waste heat are released, the source of which is the metabolic processes taking place inside the seeds. In typical installations, this energy is lost to the environment, while it could be utilised, for example, to heating the water used to irrigate the plants. This paper presents a concept of utilizing waste heat generated during the germination process of seeds using plate heat exchangers and the analysis of the potential for reducing the energy consumption of installations for vegetable sprout production. For this purpose, transient simulations were conducted using a developed simulation model of the technological line in Flownex Simulation Environment. In order to formulate a reliable simulation model, relevant device parameters and process data were collected. After building the model and calibrating it appropriately, an analysis of the variability of the values of all process parameters was performed, and the potential for recovering waste heat was determined. The results obtained from numerical modelling were verified against the results obtained from the production line and shows, that the amount of recoverable waste heat in the entire production cycle was about 5 GJ.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Potential for Reducing the Energy Consumption of a Vegetable Sprouts Production Using Flownex Simulation Software\",\"authors\":\"Klaudia Słomczyńska, Paweł Mirek, Marcin Panowski\",\"doi\":\"10.12913/22998624/170944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the waste energy generated in any production process is the one of possible ways of increasing energy effi - ciency. In the industrial cultivation of vegetable sprouts for food purposes, significant amounts of low-temperature waste heat are released, the source of which is the metabolic processes taking place inside the seeds. In typical installations, this energy is lost to the environment, while it could be utilised, for example, to heating the water used to irrigate the plants. This paper presents a concept of utilizing waste heat generated during the germination process of seeds using plate heat exchangers and the analysis of the potential for reducing the energy consumption of installations for vegetable sprout production. For this purpose, transient simulations were conducted using a developed simulation model of the technological line in Flownex Simulation Environment. In order to formulate a reliable simulation model, relevant device parameters and process data were collected. After building the model and calibrating it appropriately, an analysis of the variability of the values of all process parameters was performed, and the potential for recovering waste heat was determined. The results obtained from numerical modelling were verified against the results obtained from the production line and shows, that the amount of recoverable waste heat in the entire production cycle was about 5 GJ.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12913/22998624/170944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/170944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of the Potential for Reducing the Energy Consumption of a Vegetable Sprouts Production Using Flownex Simulation Software
Using the waste energy generated in any production process is the one of possible ways of increasing energy effi - ciency. In the industrial cultivation of vegetable sprouts for food purposes, significant amounts of low-temperature waste heat are released, the source of which is the metabolic processes taking place inside the seeds. In typical installations, this energy is lost to the environment, while it could be utilised, for example, to heating the water used to irrigate the plants. This paper presents a concept of utilizing waste heat generated during the germination process of seeds using plate heat exchangers and the analysis of the potential for reducing the energy consumption of installations for vegetable sprout production. For this purpose, transient simulations were conducted using a developed simulation model of the technological line in Flownex Simulation Environment. In order to formulate a reliable simulation model, relevant device parameters and process data were collected. After building the model and calibrating it appropriately, an analysis of the variability of the values of all process parameters was performed, and the potential for recovering waste heat was determined. The results obtained from numerical modelling were verified against the results obtained from the production line and shows, that the amount of recoverable waste heat in the entire production cycle was about 5 GJ.