Nabeel Abu Shaban, Safwan M Al-Qawabah, Hashem S. Alkhaldi
{"title":"多道冷轧对AlCuV合金力学特性和表面质量的影响","authors":"Nabeel Abu Shaban, Safwan M Al-Qawabah, Hashem S. Alkhaldi","doi":"10.12913/22998624/171265","DOIUrl":null,"url":null,"abstract":"In this study, the effect of rolling angle orientation namely; 0 ο , 45 ο , and 90 ο degrees, and three rolling passes on the mechanical behavior of Al-Cu after vanadium addition were investigated. Al-4%Cu and Al-4%Cu-0.1%V sheets were produced and rolled from 4 mm to 3 mm followed by 3 to 2 mm, and finally from 2 mm to 1.3 mm. After each pass, the tensile test was performed in three directions from which the maximum tensile force, deformation energy, microhardness, and average surface roughness (Ra) were determined. A pronounce finding is that the addition of both additions of 0.1% vanadium to Al-4%Cu alloy and multi-rolling passes resulted in reducing the deformation energy by 85.4, and the maximum tensile forces reduced by 56.6%, this resulted in reduction of production cost of AlCuV alloys, furthermore, it resulted in reducing the anisotropy of AlCuV alloy. Additionally, the average microhardness was enhanced for Al-Cu and AlCuV alloy, whereas the Ra was in maximum enhanced for AlCuV alloy of about 64.9%.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Multi-Cold Rolling Passes on Mechanical Characteristics and Surface Quality of AlCuV Alloy\",\"authors\":\"Nabeel Abu Shaban, Safwan M Al-Qawabah, Hashem S. Alkhaldi\",\"doi\":\"10.12913/22998624/171265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of rolling angle orientation namely; 0 ο , 45 ο , and 90 ο degrees, and three rolling passes on the mechanical behavior of Al-Cu after vanadium addition were investigated. Al-4%Cu and Al-4%Cu-0.1%V sheets were produced and rolled from 4 mm to 3 mm followed by 3 to 2 mm, and finally from 2 mm to 1.3 mm. After each pass, the tensile test was performed in three directions from which the maximum tensile force, deformation energy, microhardness, and average surface roughness (Ra) were determined. A pronounce finding is that the addition of both additions of 0.1% vanadium to Al-4%Cu alloy and multi-rolling passes resulted in reducing the deformation energy by 85.4, and the maximum tensile forces reduced by 56.6%, this resulted in reduction of production cost of AlCuV alloys, furthermore, it resulted in reducing the anisotropy of AlCuV alloy. Additionally, the average microhardness was enhanced for Al-Cu and AlCuV alloy, whereas the Ra was in maximum enhanced for AlCuV alloy of about 64.9%.\",\"PeriodicalId\":46357,\"journal\":{\"name\":\"Advances in Science and Technology-Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology-Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12913/22998624/171265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/171265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Multi-Cold Rolling Passes on Mechanical Characteristics and Surface Quality of AlCuV Alloy
In this study, the effect of rolling angle orientation namely; 0 ο , 45 ο , and 90 ο degrees, and three rolling passes on the mechanical behavior of Al-Cu after vanadium addition were investigated. Al-4%Cu and Al-4%Cu-0.1%V sheets were produced and rolled from 4 mm to 3 mm followed by 3 to 2 mm, and finally from 2 mm to 1.3 mm. After each pass, the tensile test was performed in three directions from which the maximum tensile force, deformation energy, microhardness, and average surface roughness (Ra) were determined. A pronounce finding is that the addition of both additions of 0.1% vanadium to Al-4%Cu alloy and multi-rolling passes resulted in reducing the deformation energy by 85.4, and the maximum tensile forces reduced by 56.6%, this resulted in reduction of production cost of AlCuV alloys, furthermore, it resulted in reducing the anisotropy of AlCuV alloy. Additionally, the average microhardness was enhanced for Al-Cu and AlCuV alloy, whereas the Ra was in maximum enhanced for AlCuV alloy of about 64.9%.