计算少粒子系统束缚态的通用坐标高斯基

IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY
O.B. Gryniuk, B.E. Grinyuk
{"title":"计算少粒子系统束缚态的通用坐标高斯基","authors":"O.B. Gryniuk, B.E. Grinyuk","doi":"10.15407/ujpe68.9.587","DOIUrl":null,"url":null,"abstract":"A new simple basis is proposed for variational calculations of the bound states of a few-particle system. For an N-particle system with pairwise interactions, the matrix elements of the Hamiltonian are found in an explicit form. A modified version of the basis invariant with respect to spatial translations is considered as well. As an example, the 12C nucleus is considered as a system consisting of three α-particles, and the convergence of the method is briefly discussed.","PeriodicalId":23400,"journal":{"name":"Ukrainian Journal of Physics","volume":"63 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Coordinate Gaussian Basis for Calculations of the Bound States of a Few-Particle System\",\"authors\":\"O.B. Gryniuk, B.E. Grinyuk\",\"doi\":\"10.15407/ujpe68.9.587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new simple basis is proposed for variational calculations of the bound states of a few-particle system. For an N-particle system with pairwise interactions, the matrix elements of the Hamiltonian are found in an explicit form. A modified version of the basis invariant with respect to spatial translations is considered as well. As an example, the 12C nucleus is considered as a system consisting of three α-particles, and the convergence of the method is briefly discussed.\",\"PeriodicalId\":23400,\"journal\":{\"name\":\"Ukrainian Journal of Physics\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ujpe68.9.587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ujpe68.9.587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的简单基础,用于变分计算少粒子系统的束缚态。对于具有成对相互作用的n粒子系统,哈密顿量的矩阵元素以显式形式存在。关于空间平移的基不变量的修改版本也被考虑。以12C核为例,将其视为由三个α-粒子组成的体系,并简要讨论了该方法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Coordinate Gaussian Basis for Calculations of the Bound States of a Few-Particle System
A new simple basis is proposed for variational calculations of the bound states of a few-particle system. For an N-particle system with pairwise interactions, the matrix elements of the Hamiltonian are found in an explicit form. A modified version of the basis invariant with respect to spatial translations is considered as well. As an example, the 12C nucleus is considered as a system consisting of three α-particles, and the convergence of the method is briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ukrainian Journal of Physics
Ukrainian Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.20
自引率
20.00%
发文量
244
期刊介绍: Ukrainian Journal of Physics is the general physics edition of the Department of Physics and Astronomy of the National Academy of Sciences of Ukraine. The journal publishes original papers and reviews in the fields of experimental and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信