带积分条件泊松方程的交替方向隐式解法

IF 1.6 3区 数学 Q1 MATHEMATICS
Olga Štikonienė, Mifodijus Sapagovas
{"title":"带积分条件泊松方程的交替方向隐式解法","authors":"Olga Štikonienė, Mifodijus Sapagovas","doi":"10.3846/mma.2023.18029","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the convergence of the Peaceman-Rachford Alternating Direction Implicit method for the system of difference equations, approximating the two-dimensional elliptic equations in rectangular domain with nonlocal integral conditions. The main goal of the paper is the analysis of spectrum structure of difference eigenvalue problem with nonlocal conditions. The convergence of iterative method is proved in the case when the system of eigenvectors is complete. The main results are generalized for the system of difference equations, approximating the differential problem with truncation error O(h4).","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALTERNATING DIRECTION IMPLICIT METHOD FOR POISSON EQUATION WITH INTEGRAL CONDITIONS\",\"authors\":\"Olga Štikonienė, Mifodijus Sapagovas\",\"doi\":\"10.3846/mma.2023.18029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the convergence of the Peaceman-Rachford Alternating Direction Implicit method for the system of difference equations, approximating the two-dimensional elliptic equations in rectangular domain with nonlocal integral conditions. The main goal of the paper is the analysis of spectrum structure of difference eigenvalue problem with nonlocal conditions. The convergence of iterative method is proved in the case when the system of eigenvectors is complete. The main results are generalized for the system of difference equations, approximating the differential problem with truncation error O(h4).\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.18029\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mma.2023.18029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有非局部积分条件的二维椭圆型方程在矩形域近似的差分方程组的Peaceman-Rachford交替方向隐式方法的收敛性。本文的主要目的是分析具有非局部条件的差分特征值问题的谱结构。在特征向量完备的情况下,证明了迭代法的收敛性。将主要结果推广到差分方程组,近似于截断误差为0 (h4)的微分问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ALTERNATING DIRECTION IMPLICIT METHOD FOR POISSON EQUATION WITH INTEGRAL CONDITIONS
In this paper, we investigate the convergence of the Peaceman-Rachford Alternating Direction Implicit method for the system of difference equations, approximating the two-dimensional elliptic equations in rectangular domain with nonlocal integral conditions. The main goal of the paper is the analysis of spectrum structure of difference eigenvalue problem with nonlocal conditions. The convergence of iterative method is proved in the case when the system of eigenvectors is complete. The main results are generalized for the system of difference equations, approximating the differential problem with truncation error O(h4).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信