关于线形图的监测边测地数

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Gemaji Bao, Chenxu Yang, Zhiqiang Ma, Zhen Ji, Xin Xu, Peiyao Qin
{"title":"关于线形图的监测边测地数","authors":"Gemaji Bao, Chenxu Yang, Zhiqiang Ma, Zhen Ji, Xin Xu, Peiyao Qin","doi":"10.1142/s0219265923500251","DOIUrl":null,"url":null,"abstract":"For a vertex set [Formula: see text], we say that [Formula: see text] is a monitoring-edge-geodetic set (MEG-set for short) of graph [Formula: see text], that is, some vertices of [Formula: see text] can monitor an edge of the graph, if and only if we can remove that edge would change the distance between some pair of vertices in the set. The monitoring-edge-geodetic number [Formula: see text] of a graph [Formula: see text] is defined as the minimum cardinality of a monitoring-edge-geodetic set of [Formula: see text]. The line graph [Formula: see text] of [Formula: see text] is the graph whose vertices are in one-to-one correspondence with the edges of [Formula: see text], that is, if two vertices are adjacent in [Formula: see text] if and only if the corresponding edges have a common vertex in [Formula: see text]. In this paper, we study the relation between [Formula: see text] and [Formula: see text], and prove that [Formula: see text]. Next, we have determined the exact values for a MEG-set of some special graphs and their line graphs. For a graph [Formula: see text] and its line graph [Formula: see text], we prove that [Formula: see text] can be arbitrarily large.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"29 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Monitoring-Edge-Geodetic Numbers of Line Graphs\",\"authors\":\"Gemaji Bao, Chenxu Yang, Zhiqiang Ma, Zhen Ji, Xin Xu, Peiyao Qin\",\"doi\":\"10.1142/s0219265923500251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a vertex set [Formula: see text], we say that [Formula: see text] is a monitoring-edge-geodetic set (MEG-set for short) of graph [Formula: see text], that is, some vertices of [Formula: see text] can monitor an edge of the graph, if and only if we can remove that edge would change the distance between some pair of vertices in the set. The monitoring-edge-geodetic number [Formula: see text] of a graph [Formula: see text] is defined as the minimum cardinality of a monitoring-edge-geodetic set of [Formula: see text]. The line graph [Formula: see text] of [Formula: see text] is the graph whose vertices are in one-to-one correspondence with the edges of [Formula: see text], that is, if two vertices are adjacent in [Formula: see text] if and only if the corresponding edges have a common vertex in [Formula: see text]. In this paper, we study the relation between [Formula: see text] and [Formula: see text], and prove that [Formula: see text]. Next, we have determined the exact values for a MEG-set of some special graphs and their line graphs. For a graph [Formula: see text] and its line graph [Formula: see text], we prove that [Formula: see text] can be arbitrarily large.\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265923500251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265923500251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个顶点集[公式:见文],我们说[公式:见文]是图[公式:见文]的一个监控边测地集(简称meg集),即[公式:见文]的一些顶点可以监控图的某条边,当且仅当我们可以移除这条边会改变集合中某些顶点对之间的距离。图[公式:见文]的监测边测地线数[公式:见文]定义为[公式:见文]的监测边测地线集合的最小基数。[公式:见文]的直线图[公式:见文]是顶点与[公式:见文]的边一一对应的图,即当且仅当[公式:见文]中两个顶点相邻时,当对应的边有[公式:见文]中的一个公共顶点。本文研究了[公式:见文]与[公式:见文]之间的关系,证明了[公式:见文]。接下来,我们确定了一些特殊图及其线形图的meg集的确切值。对于一个图[公式:见文]和它的线图[公式:见文],我们证明了[公式:见文]可以任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Monitoring-Edge-Geodetic Numbers of Line Graphs
For a vertex set [Formula: see text], we say that [Formula: see text] is a monitoring-edge-geodetic set (MEG-set for short) of graph [Formula: see text], that is, some vertices of [Formula: see text] can monitor an edge of the graph, if and only if we can remove that edge would change the distance between some pair of vertices in the set. The monitoring-edge-geodetic number [Formula: see text] of a graph [Formula: see text] is defined as the minimum cardinality of a monitoring-edge-geodetic set of [Formula: see text]. The line graph [Formula: see text] of [Formula: see text] is the graph whose vertices are in one-to-one correspondence with the edges of [Formula: see text], that is, if two vertices are adjacent in [Formula: see text] if and only if the corresponding edges have a common vertex in [Formula: see text]. In this paper, we study the relation between [Formula: see text] and [Formula: see text], and prove that [Formula: see text]. Next, we have determined the exact values for a MEG-set of some special graphs and their line graphs. For a graph [Formula: see text] and its line graph [Formula: see text], we prove that [Formula: see text] can be arbitrarily large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信