{"title":"吲哚唑衍生物的合成进展:过渡金属、酸/碱和绿色化学催化方法综述","authors":"Archana Kapoor, Mithlesh Yadav","doi":"10.2174/0122133372264656231004032920","DOIUrl":null,"url":null,"abstract":"Background:: Indazole is a heterocyclic motif widely used in medicinal chemistry due to its positive photophysical properties. The development of new methods for synthesizing the indazole scaffold is of great importance in drug discovery. Methods:: This study presents a detailed review of current advances in indazole synthesis, focusing on catalyst-based and green chemistry approaches. The analysis is classified based on acid-base and transition-metal catalysts and green chemistry methods. Catalyst-based advances have given a new impetus to the synthesis of this effective pharmacophore. Results:: The extensive literature on indazole synthesis demonstrates the notable progress achieved through catalyst-based approaches. These methods have enabled researchers to create a wide range of indazole derivatives and analogs, facilitating their application in pharmaceutical products and organic molecules. The use of acid-base and transition-metal catalysts has been particularly effective in enhancing the efficiency and selectivity of indazole synthesis. Conclusion:: Indazoles and their variants are widely used in pharmaceutical products and organic molecules. The recent literature indicates that catalyst-based approaches have resulted in significant advancements in indazole synthesis. This review may be useful for researchers in medicinal chemistry, content chemistry, and agrochemistry.","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Synthesis of Indazole Variants: A Comprehensive Review of Transition Metal, Acid/Base and Green Chemistry-based Catalytic Approaches\",\"authors\":\"Archana Kapoor, Mithlesh Yadav\",\"doi\":\"10.2174/0122133372264656231004032920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background:: Indazole is a heterocyclic motif widely used in medicinal chemistry due to its positive photophysical properties. The development of new methods for synthesizing the indazole scaffold is of great importance in drug discovery. Methods:: This study presents a detailed review of current advances in indazole synthesis, focusing on catalyst-based and green chemistry approaches. The analysis is classified based on acid-base and transition-metal catalysts and green chemistry methods. Catalyst-based advances have given a new impetus to the synthesis of this effective pharmacophore. Results:: The extensive literature on indazole synthesis demonstrates the notable progress achieved through catalyst-based approaches. These methods have enabled researchers to create a wide range of indazole derivatives and analogs, facilitating their application in pharmaceutical products and organic molecules. The use of acid-base and transition-metal catalysts has been particularly effective in enhancing the efficiency and selectivity of indazole synthesis. Conclusion:: Indazoles and their variants are widely used in pharmaceutical products and organic molecules. The recent literature indicates that catalyst-based approaches have resulted in significant advancements in indazole synthesis. This review may be useful for researchers in medicinal chemistry, content chemistry, and agrochemistry.\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122133372264656231004032920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122133372264656231004032920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Advances in Synthesis of Indazole Variants: A Comprehensive Review of Transition Metal, Acid/Base and Green Chemistry-based Catalytic Approaches
Background:: Indazole is a heterocyclic motif widely used in medicinal chemistry due to its positive photophysical properties. The development of new methods for synthesizing the indazole scaffold is of great importance in drug discovery. Methods:: This study presents a detailed review of current advances in indazole synthesis, focusing on catalyst-based and green chemistry approaches. The analysis is classified based on acid-base and transition-metal catalysts and green chemistry methods. Catalyst-based advances have given a new impetus to the synthesis of this effective pharmacophore. Results:: The extensive literature on indazole synthesis demonstrates the notable progress achieved through catalyst-based approaches. These methods have enabled researchers to create a wide range of indazole derivatives and analogs, facilitating their application in pharmaceutical products and organic molecules. The use of acid-base and transition-metal catalysts has been particularly effective in enhancing the efficiency and selectivity of indazole synthesis. Conclusion:: Indazoles and their variants are widely used in pharmaceutical products and organic molecules. The recent literature indicates that catalyst-based approaches have resulted in significant advancements in indazole synthesis. This review may be useful for researchers in medicinal chemistry, content chemistry, and agrochemistry.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.