{"title":"实时云安全和监控的车载自组织网络的数字孪生行为洞察","authors":"K. Lakshmi Narayanan, R. Naresh","doi":"10.3233/jifs-233527","DOIUrl":null,"url":null,"abstract":"Vehicular Ad-Hoc Network (VANET) Technology is advancing due to the convergence of VANET and cloud computing technologies, Vehicular Ad-Hoc Network (VANET) entities can benefit from the cloud service provider’s favourable storage and computing capabilities. Cloud computing, the processing and storage capabilities provided by various cloud service providers, would be available to all VANET enterprises. Digital Twin helps in creating a digital view of the Vehicle. It focuses on the physical behaviour of the Vehicle as well as the software it alerts when it finds issues with the performance. The representation of the Vehicle is created using intelligent sensors, which are in OBU of VANET that help collect info from the product. The author introduces the Cloud-based three-layer key management for VANET in this study. Because VANET connections can abruptly change, critical negotiation verification must be completed quickly and with minimal bandwidth. When the Vehicles are in movement, we confront the difficulty in timely methods, network stability, and routing concerns like reliability and scalability. We must additionally address issues such as fair network access, inappropriate behaviour identification, cancellation, the authentication process, confidentiality, and vehicle trustworthiness verification. The proposed All-Wheel Control (AWC) method in this study may improve the safety and efficiency of VANETs. This technology would also benefit future intelligent transportation systems. The Rivest–Shamir–Adleman (RSA) algorithm and Chinese Remainder Theorem algorithms generate keys at the group, subgroup, and node levels. The proposed method produces better results than the previous methods.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"56 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An insight into digital twin behavior of vehicular ad hoc network for real-time cloud security and monitoring\",\"authors\":\"K. Lakshmi Narayanan, R. Naresh\",\"doi\":\"10.3233/jifs-233527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular Ad-Hoc Network (VANET) Technology is advancing due to the convergence of VANET and cloud computing technologies, Vehicular Ad-Hoc Network (VANET) entities can benefit from the cloud service provider’s favourable storage and computing capabilities. Cloud computing, the processing and storage capabilities provided by various cloud service providers, would be available to all VANET enterprises. Digital Twin helps in creating a digital view of the Vehicle. It focuses on the physical behaviour of the Vehicle as well as the software it alerts when it finds issues with the performance. The representation of the Vehicle is created using intelligent sensors, which are in OBU of VANET that help collect info from the product. The author introduces the Cloud-based three-layer key management for VANET in this study. Because VANET connections can abruptly change, critical negotiation verification must be completed quickly and with minimal bandwidth. When the Vehicles are in movement, we confront the difficulty in timely methods, network stability, and routing concerns like reliability and scalability. We must additionally address issues such as fair network access, inappropriate behaviour identification, cancellation, the authentication process, confidentiality, and vehicle trustworthiness verification. The proposed All-Wheel Control (AWC) method in this study may improve the safety and efficiency of VANETs. This technology would also benefit future intelligent transportation systems. The Rivest–Shamir–Adleman (RSA) algorithm and Chinese Remainder Theorem algorithms generate keys at the group, subgroup, and node levels. The proposed method produces better results than the previous methods.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233527\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233527","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An insight into digital twin behavior of vehicular ad hoc network for real-time cloud security and monitoring
Vehicular Ad-Hoc Network (VANET) Technology is advancing due to the convergence of VANET and cloud computing technologies, Vehicular Ad-Hoc Network (VANET) entities can benefit from the cloud service provider’s favourable storage and computing capabilities. Cloud computing, the processing and storage capabilities provided by various cloud service providers, would be available to all VANET enterprises. Digital Twin helps in creating a digital view of the Vehicle. It focuses on the physical behaviour of the Vehicle as well as the software it alerts when it finds issues with the performance. The representation of the Vehicle is created using intelligent sensors, which are in OBU of VANET that help collect info from the product. The author introduces the Cloud-based three-layer key management for VANET in this study. Because VANET connections can abruptly change, critical negotiation verification must be completed quickly and with minimal bandwidth. When the Vehicles are in movement, we confront the difficulty in timely methods, network stability, and routing concerns like reliability and scalability. We must additionally address issues such as fair network access, inappropriate behaviour identification, cancellation, the authentication process, confidentiality, and vehicle trustworthiness verification. The proposed All-Wheel Control (AWC) method in this study may improve the safety and efficiency of VANETs. This technology would also benefit future intelligent transportation systems. The Rivest–Shamir–Adleman (RSA) algorithm and Chinese Remainder Theorem algorithms generate keys at the group, subgroup, and node levels. The proposed method produces better results than the previous methods.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.