结构方程模型中L0和Lp损失函数的鲁棒估计

Psych Pub Date : 2023-10-20 DOI:10.3390/psych5040075
Alexander Robitzsch
{"title":"结构方程模型中L0和Lp损失函数的鲁棒估计","authors":"Alexander Robitzsch","doi":"10.3390/psych5040075","DOIUrl":null,"url":null,"abstract":"The Lp loss function has been used for model-robust estimation of structural equation models based on robustly fitting moments. This article addresses the choice of the tuning parameter ε that appears in the differentiable approximations of the nondifferentiable Lp loss functions. Moreover, model-robust estimation based on the Lp loss function is compared with a recently proposed differentiable approximation of the L0 loss function and a direct minimization of a smoothed version of the Bayesian information criterion in regularized estimation. It turned out in a simulation study that the L0 loss function slightly outperformed the Lp loss function in terms of bias and root mean square error. Furthermore, standard errors of the model-robust SEM estimators were analytically derived and exhibited satisfactory coverage rates.","PeriodicalId":93139,"journal":{"name":"Psych","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L0 and Lp Loss Functions in Model-Robust Estimation of Structural Equation Models\",\"authors\":\"Alexander Robitzsch\",\"doi\":\"10.3390/psych5040075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lp loss function has been used for model-robust estimation of structural equation models based on robustly fitting moments. This article addresses the choice of the tuning parameter ε that appears in the differentiable approximations of the nondifferentiable Lp loss functions. Moreover, model-robust estimation based on the Lp loss function is compared with a recently proposed differentiable approximation of the L0 loss function and a direct minimization of a smoothed version of the Bayesian information criterion in regularized estimation. It turned out in a simulation study that the L0 loss function slightly outperformed the Lp loss function in terms of bias and root mean square error. Furthermore, standard errors of the model-robust SEM estimators were analytically derived and exhibited satisfactory coverage rates.\",\"PeriodicalId\":93139,\"journal\":{\"name\":\"Psych\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psych\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psych5040075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5040075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Lp损失函数被用于基于鲁棒拟合矩的结构方程模型的模型鲁棒估计。本文讨论了不可微Lp损失函数的可微近似中出现的调谐参数ε的选择。此外,将基于Lp损失函数的模型鲁棒估计与最近提出的L0损失函数的可微逼近和正则化估计中贝叶斯信息准则的光滑版本的直接最小化进行了比较。仿真研究表明,L0损失函数在偏差和均方根误差方面略优于Lp损失函数。此外,分析推导了模型鲁棒SEM估计的标准误差,并显示出令人满意的覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L0 and Lp Loss Functions in Model-Robust Estimation of Structural Equation Models
The Lp loss function has been used for model-robust estimation of structural equation models based on robustly fitting moments. This article addresses the choice of the tuning parameter ε that appears in the differentiable approximations of the nondifferentiable Lp loss functions. Moreover, model-robust estimation based on the Lp loss function is compared with a recently proposed differentiable approximation of the L0 loss function and a direct minimization of a smoothed version of the Bayesian information criterion in regularized estimation. It turned out in a simulation study that the L0 loss function slightly outperformed the Lp loss function in terms of bias and root mean square error. Furthermore, standard errors of the model-robust SEM estimators were analytically derived and exhibited satisfactory coverage rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信