Hilbert-Schmidt算子空间上的递归性

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Mansooreh Moosapoor
{"title":"Hilbert-Schmidt算子空间上的递归性","authors":"Mansooreh Moosapoor","doi":"10.21123/bsj.2023.8870","DOIUrl":null,"url":null,"abstract":"In this paper, it is proved that if a C0-semigroup is chaotic, hypermixing or supermixing, then the related left multiplication C0-semigroup on the space of Hilbert-Schmidt operators is recurrent if and only if it is hypercyclic. Also, it is stated that under some conditions recurrence of a C0-semigroup and the recurrency of the left multiplication C0-semigroup that is related to it, on the space of Hilbert-Schmidt operators are equivalent. Moreover, some sufficient conditions for recurrency and hypercyclicity of the left multiplication C0-semigroup are presented that are based on dense subsets","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":"54 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrency on the Space of Hilbert-Schmidt Operators\",\"authors\":\"Mansooreh Moosapoor\",\"doi\":\"10.21123/bsj.2023.8870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is proved that if a C0-semigroup is chaotic, hypermixing or supermixing, then the related left multiplication C0-semigroup on the space of Hilbert-Schmidt operators is recurrent if and only if it is hypercyclic. Also, it is stated that under some conditions recurrence of a C0-semigroup and the recurrency of the left multiplication C0-semigroup that is related to it, on the space of Hilbert-Schmidt operators are equivalent. Moreover, some sufficient conditions for recurrency and hypercyclicity of the left multiplication C0-semigroup are presented that are based on dense subsets\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2023.8870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2023.8870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了如果一个c0 -半群是混沌、超混合或超混合的,则Hilbert-Schmidt算子空间上相应的左乘法c0 -半群是循环的当且仅当它是超循环的。并指出在某些条件下,c0 -半群的递归性与与之相关的左乘法c0 -半群在Hilbert-Schmidt算子空间上的递归性是等价的。此外,给出了基于密集子集的左乘法c0 -半群的递归性和超环性的充分条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrency on the Space of Hilbert-Schmidt Operators
In this paper, it is proved that if a C0-semigroup is chaotic, hypermixing or supermixing, then the related left multiplication C0-semigroup on the space of Hilbert-Schmidt operators is recurrent if and only if it is hypercyclic. Also, it is stated that under some conditions recurrence of a C0-semigroup and the recurrency of the left multiplication C0-semigroup that is related to it, on the space of Hilbert-Schmidt operators are equivalent. Moreover, some sufficient conditions for recurrency and hypercyclicity of the left multiplication C0-semigroup are presented that are based on dense subsets
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信