Omar A. Abdulrazzaq, Shaima K. Abdulridha, Dhafir F. Ali, Hussein Al-Qarishey
{"title":"以太阳能为动力,电化学法制备铅笔电极氧化石墨烯纳米片的研究","authors":"Omar A. Abdulrazzaq, Shaima K. Abdulridha, Dhafir F. Ali, Hussein Al-Qarishey","doi":"10.53523/ijoirvol10i2id292","DOIUrl":null,"url":null,"abstract":"Graphene Oxide nanosheets were synthesized using electrochemical exfoliation of pencil electrodes in aqueous solution containing 2% of magnesium sulfate salt. A solar panel of 20V was used as a power supply to turn the synthesis into a green method. Several measurements were carried out to investigate the product, namely: Raman scattering, X-ray diffraction, photoluminescence, UV-VIS-NIR spectroscopy, and FTIR spectroscopy. Raman scattering showed the existence of both D-band and G-band, which are an indication of graphene oxide existence. The D-to-G band ratio was 1.5. The results of X-ray showed a diffraction peak at 2θ = 20.7° corresponding to the space distance between graphene oxide nanosheets and a diffraction peak at 2θ = 26.25° corresponding to the short range interplanar spacing. Photoluminescence showed two peaks of emission (at wavelengths 355nm & 701nm) regarding to the π-π* transition. UV-VIS-NIR spectroscopy exhibited a 4.2eV photon energy absorption peak corresponding to the aromatic C=C bonds and 5.4eV photon energy absorption peak corresponding to the carbonyl groups. FTIR showed peaks related to hydroxyl groups, hydrogen-bonded OH groups of COOH, and functional groups such as C-OH (1375 cm-1), and C-O (1039 cm-1). FTIR results approved that graphene oxide nanosheets are functionalized. TEM images show that the synthesized graphene oxide is single-, double-, and multi-layer stacks with an amount of impurities.","PeriodicalId":14665,"journal":{"name":"Iraqi Journal of Industrial Research","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Graphene Oxide Nanosheets Synthesized from Pencil Electrode Using Electrochemical Method and Solar Energy as a Source of Power\",\"authors\":\"Omar A. Abdulrazzaq, Shaima K. Abdulridha, Dhafir F. Ali, Hussein Al-Qarishey\",\"doi\":\"10.53523/ijoirvol10i2id292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene Oxide nanosheets were synthesized using electrochemical exfoliation of pencil electrodes in aqueous solution containing 2% of magnesium sulfate salt. A solar panel of 20V was used as a power supply to turn the synthesis into a green method. Several measurements were carried out to investigate the product, namely: Raman scattering, X-ray diffraction, photoluminescence, UV-VIS-NIR spectroscopy, and FTIR spectroscopy. Raman scattering showed the existence of both D-band and G-band, which are an indication of graphene oxide existence. The D-to-G band ratio was 1.5. The results of X-ray showed a diffraction peak at 2θ = 20.7° corresponding to the space distance between graphene oxide nanosheets and a diffraction peak at 2θ = 26.25° corresponding to the short range interplanar spacing. Photoluminescence showed two peaks of emission (at wavelengths 355nm & 701nm) regarding to the π-π* transition. UV-VIS-NIR spectroscopy exhibited a 4.2eV photon energy absorption peak corresponding to the aromatic C=C bonds and 5.4eV photon energy absorption peak corresponding to the carbonyl groups. FTIR showed peaks related to hydroxyl groups, hydrogen-bonded OH groups of COOH, and functional groups such as C-OH (1375 cm-1), and C-O (1039 cm-1). FTIR results approved that graphene oxide nanosheets are functionalized. TEM images show that the synthesized graphene oxide is single-, double-, and multi-layer stacks with an amount of impurities.\",\"PeriodicalId\":14665,\"journal\":{\"name\":\"Iraqi Journal of Industrial Research\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Industrial Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53523/ijoirvol10i2id292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Industrial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53523/ijoirvol10i2id292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Graphene Oxide Nanosheets Synthesized from Pencil Electrode Using Electrochemical Method and Solar Energy as a Source of Power
Graphene Oxide nanosheets were synthesized using electrochemical exfoliation of pencil electrodes in aqueous solution containing 2% of magnesium sulfate salt. A solar panel of 20V was used as a power supply to turn the synthesis into a green method. Several measurements were carried out to investigate the product, namely: Raman scattering, X-ray diffraction, photoluminescence, UV-VIS-NIR spectroscopy, and FTIR spectroscopy. Raman scattering showed the existence of both D-band and G-band, which are an indication of graphene oxide existence. The D-to-G band ratio was 1.5. The results of X-ray showed a diffraction peak at 2θ = 20.7° corresponding to the space distance between graphene oxide nanosheets and a diffraction peak at 2θ = 26.25° corresponding to the short range interplanar spacing. Photoluminescence showed two peaks of emission (at wavelengths 355nm & 701nm) regarding to the π-π* transition. UV-VIS-NIR spectroscopy exhibited a 4.2eV photon energy absorption peak corresponding to the aromatic C=C bonds and 5.4eV photon energy absorption peak corresponding to the carbonyl groups. FTIR showed peaks related to hydroxyl groups, hydrogen-bonded OH groups of COOH, and functional groups such as C-OH (1375 cm-1), and C-O (1039 cm-1). FTIR results approved that graphene oxide nanosheets are functionalized. TEM images show that the synthesized graphene oxide is single-, double-, and multi-layer stacks with an amount of impurities.