Kalyan Chakraborty, Shigeru Kanemitsu, Antanas Laurinčikas
{"title":"短区间内黎曼函数的联合离散通用性","authors":"Kalyan Chakraborty, Shigeru Kanemitsu, Antanas Laurinčikas","doi":"10.3846/mma.2023.18884","DOIUrl":null,"url":null,"abstract":"In the paper, we prove that the set of discrete shifts of the Riemann zeta-function approximating analytic nonvanishing functions f1(s),...,fr(s) defined on has a positive density in the interval [N,N + M] with with real algebraic numbers a1,...,ar linearly independent over Q. A similar result is obtained for shifts of certain absolutely convergent Dirichlet series.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON JOINT DISCRETE UNIVERSALITY OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS\",\"authors\":\"Kalyan Chakraborty, Shigeru Kanemitsu, Antanas Laurinčikas\",\"doi\":\"10.3846/mma.2023.18884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we prove that the set of discrete shifts of the Riemann zeta-function approximating analytic nonvanishing functions f1(s),...,fr(s) defined on has a positive density in the interval [N,N + M] with with real algebraic numbers a1,...,ar linearly independent over Q. A similar result is obtained for shifts of certain absolutely convergent Dirichlet series.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.18884\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mma.2023.18884","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON JOINT DISCRETE UNIVERSALITY OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS
In the paper, we prove that the set of discrete shifts of the Riemann zeta-function approximating analytic nonvanishing functions f1(s),...,fr(s) defined on has a positive density in the interval [N,N + M] with with real algebraic numbers a1,...,ar linearly independent over Q. A similar result is obtained for shifts of certain absolutely convergent Dirichlet series.