{"title":"基于方面词嵌入图卷积网络的情感分析方法研究","authors":"Qiuyue Wei, Dong Yang, Mingjie Zhang","doi":"10.3233/jifs-230537","DOIUrl":null,"url":null,"abstract":"Aspect-based sentiment analysis is a fine-grained task in the field of sentiment analysis. Various GCN approaches have recently emerged to work on this, but many approaches ignored the critical role of aspectual word information and the effect of noise. In view of this situation, we propose an aspect-based word embedding graph convolutional network (AWEGCN) model. In order to make good use of the aspect information and distinguish the contextual information that is more important for a particular aspect, the aspect information is embedded in the output of the hidden layer. To reduce the noise effect when multiple aspect words appear in a sentence, after going through the bidirectional graph convolutional network, the aspect information is embedded. A specific contextual representation is computed through an attention mechanism, which is used as the final classification feature. Experiments show that our model achieves impressive performance on five public datasets, and we also apply BERT and XLNet pre-trained models to this task and obtain advanced results that validate the effectiveness of our model.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"29 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on sentiment analysis methods based on aspect word embedding graph convolutional networks\",\"authors\":\"Qiuyue Wei, Dong Yang, Mingjie Zhang\",\"doi\":\"10.3233/jifs-230537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect-based sentiment analysis is a fine-grained task in the field of sentiment analysis. Various GCN approaches have recently emerged to work on this, but many approaches ignored the critical role of aspectual word information and the effect of noise. In view of this situation, we propose an aspect-based word embedding graph convolutional network (AWEGCN) model. In order to make good use of the aspect information and distinguish the contextual information that is more important for a particular aspect, the aspect information is embedded in the output of the hidden layer. To reduce the noise effect when multiple aspect words appear in a sentence, after going through the bidirectional graph convolutional network, the aspect information is embedded. A specific contextual representation is computed through an attention mechanism, which is used as the final classification feature. Experiments show that our model achieves impressive performance on five public datasets, and we also apply BERT and XLNet pre-trained models to this task and obtain advanced results that validate the effectiveness of our model.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-230537\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-230537","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Research on sentiment analysis methods based on aspect word embedding graph convolutional networks
Aspect-based sentiment analysis is a fine-grained task in the field of sentiment analysis. Various GCN approaches have recently emerged to work on this, but many approaches ignored the critical role of aspectual word information and the effect of noise. In view of this situation, we propose an aspect-based word embedding graph convolutional network (AWEGCN) model. In order to make good use of the aspect information and distinguish the contextual information that is more important for a particular aspect, the aspect information is embedded in the output of the hidden layer. To reduce the noise effect when multiple aspect words appear in a sentence, after going through the bidirectional graph convolutional network, the aspect information is embedded. A specific contextual representation is computed through an attention mechanism, which is used as the final classification feature. Experiments show that our model achieves impressive performance on five public datasets, and we also apply BERT and XLNet pre-trained models to this task and obtain advanced results that validate the effectiveness of our model.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.