质量-作用系统准平稳分布的灵敏度分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yao Li, Yaping Yuan
{"title":"质量-作用系统准平稳分布的灵敏度分析","authors":"Yao Li, Yaping Yuan","doi":"10.1137/22m1535875","DOIUrl":null,"url":null,"abstract":"This paper studies the sensitivity analysis of mass-action systems against their diffusion approximations, particularly the dependence on population sizes. As a continuous-time Markov chain, a mass-action system can be described by an equation driven by finitely many Poisson processes, which has a diffusion approximation that can be pathwisely matched. The magnitude of noise in mass-action systems is proportional to the square root of the molecule count/population, which makes a large class of mass-action systems have quasi-stationary distributions (QSDs) besides invariant probability measures. In this paper, we modify the coupling-based technique developed in [M. Dobson, Y. Li, and J. Zhai, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 135–162] to estimate an upper bound of the 1-Wasserstein distance between two QSDs. Some numerical results of sensitivity with different population sizes are provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis of Quasi-Stationary Distributions (QSDs) of Mass-Action Systems\",\"authors\":\"Yao Li, Yaping Yuan\",\"doi\":\"10.1137/22m1535875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the sensitivity analysis of mass-action systems against their diffusion approximations, particularly the dependence on population sizes. As a continuous-time Markov chain, a mass-action system can be described by an equation driven by finitely many Poisson processes, which has a diffusion approximation that can be pathwisely matched. The magnitude of noise in mass-action systems is proportional to the square root of the molecule count/population, which makes a large class of mass-action systems have quasi-stationary distributions (QSDs) besides invariant probability measures. In this paper, we modify the coupling-based technique developed in [M. Dobson, Y. Li, and J. Zhai, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 135–162] to estimate an upper bound of the 1-Wasserstein distance between two QSDs. Some numerical results of sensitivity with different population sizes are provided.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1535875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1535875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了质量作用系统对其扩散近似的敏感性分析,特别是对种群大小的依赖。作为一个连续时间马尔可夫链,质量-作用系统可以用一个由有限多个泊松过程驱动的方程来描述,该泊松过程具有路径智能匹配的扩散近似。在质量作用系统中,噪声的大小与分子数/分子数的平方根成正比,这使得大量的质量作用系统除了具有不变的概率测度外,还具有准平稳分布(qsd)。在本文中,我们改进了基于耦合的技术。杜布森,李勇,翟志强,SIAM/ASA J.不确定。Quantif。[j], 9 (2021), pp. 135-162]估计两个qsd之间1-Wasserstein距离的上界。给出了不同种群大小下的敏感性数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Analysis of Quasi-Stationary Distributions (QSDs) of Mass-Action Systems
This paper studies the sensitivity analysis of mass-action systems against their diffusion approximations, particularly the dependence on population sizes. As a continuous-time Markov chain, a mass-action system can be described by an equation driven by finitely many Poisson processes, which has a diffusion approximation that can be pathwisely matched. The magnitude of noise in mass-action systems is proportional to the square root of the molecule count/population, which makes a large class of mass-action systems have quasi-stationary distributions (QSDs) besides invariant probability measures. In this paper, we modify the coupling-based technique developed in [M. Dobson, Y. Li, and J. Zhai, SIAM/ASA J. Uncertain. Quantif., 9 (2021), pp. 135–162] to estimate an upper bound of the 1-Wasserstein distance between two QSDs. Some numerical results of sensitivity with different population sizes are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信