Meghan Halabisky, Dan Miller, Anthony J. Stewart, Amy Yahnke, Daniel Lorigan, Tate Brasel, Ludmila Monika Moskal
{"title":"湿地内在势工具:通过多尺度湿地指标遥感代理的机器学习绘制湿地内在势","authors":"Meghan Halabisky, Dan Miller, Anthony J. Stewart, Amy Yahnke, Daniel Lorigan, Tate Brasel, Ludmila Monika Moskal","doi":"10.5194/hess-27-3687-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Accurate, unbiased wetland inventories are critical to monitor and protect wetlands from future harm or land conversion. However, most wetland inventories are constructed through manual image interpretation or automated classification of multi-band imagery and are biased towards wetlands that are easy to directly detect in aerial and satellite imagery. Wetlands that are obscured by forest canopy, that occur ephemerally, and that have no visible standing water are, therefore, often missing from wetland maps. To aid in the detection of these cryptic wetlands, we developed the Wetland Intrinsic Potential (WIP) tool, based on a wetland-indicator framework commonly used on the ground to detect wetlands through the presence of hydrophytic vegetation, hydrology, and hydric soils. Our tool uses a random forest model with spatially explicit input variables that represent all three wetland indicators, including novel multi-scale topographic indicators that represent the processes that drive wetland formation, to derive a map of wetland probability. With the ability to include multi-scale topographic indicators that help identify cryptic wetlands, the WIP tool can identify areas conducive to wetland formation while providing a flexible approach that can be adapted to diverse landscapes. For a study area in the Hoh River watershed in western Washington, USA, classification of the output probability with a threshold of 0.5 provided an overall accuracy of 91.97 %. Compared to the National Wetlands Inventory, the classified WIP tool output identified over 2 times the wetland area and reduced errors of omission from 47.5 % to 14.1 % but increased errors of commission from 1.9 % to 10.5 %. The WIP tool is implemented as an ArcGIS toolbox using a combination of R and Python scripts.","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"54 1","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators\",\"authors\":\"Meghan Halabisky, Dan Miller, Anthony J. Stewart, Amy Yahnke, Daniel Lorigan, Tate Brasel, Ludmila Monika Moskal\",\"doi\":\"10.5194/hess-27-3687-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Accurate, unbiased wetland inventories are critical to monitor and protect wetlands from future harm or land conversion. However, most wetland inventories are constructed through manual image interpretation or automated classification of multi-band imagery and are biased towards wetlands that are easy to directly detect in aerial and satellite imagery. Wetlands that are obscured by forest canopy, that occur ephemerally, and that have no visible standing water are, therefore, often missing from wetland maps. To aid in the detection of these cryptic wetlands, we developed the Wetland Intrinsic Potential (WIP) tool, based on a wetland-indicator framework commonly used on the ground to detect wetlands through the presence of hydrophytic vegetation, hydrology, and hydric soils. Our tool uses a random forest model with spatially explicit input variables that represent all three wetland indicators, including novel multi-scale topographic indicators that represent the processes that drive wetland formation, to derive a map of wetland probability. With the ability to include multi-scale topographic indicators that help identify cryptic wetlands, the WIP tool can identify areas conducive to wetland formation while providing a flexible approach that can be adapted to diverse landscapes. For a study area in the Hoh River watershed in western Washington, USA, classification of the output probability with a threshold of 0.5 provided an overall accuracy of 91.97 %. Compared to the National Wetlands Inventory, the classified WIP tool output identified over 2 times the wetland area and reduced errors of omission from 47.5 % to 14.1 % but increased errors of commission from 1.9 % to 10.5 %. The WIP tool is implemented as an ArcGIS toolbox using a combination of R and Python scripts.\",\"PeriodicalId\":13143,\"journal\":{\"name\":\"Hydrology and Earth System Sciences\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology and Earth System Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/hess-27-3687-2023\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/hess-27-3687-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Wetland Intrinsic Potential tool: mapping wetland intrinsic potential through machine learning of multi-scale remote sensing proxies of wetland indicators
Abstract. Accurate, unbiased wetland inventories are critical to monitor and protect wetlands from future harm or land conversion. However, most wetland inventories are constructed through manual image interpretation or automated classification of multi-band imagery and are biased towards wetlands that are easy to directly detect in aerial and satellite imagery. Wetlands that are obscured by forest canopy, that occur ephemerally, and that have no visible standing water are, therefore, often missing from wetland maps. To aid in the detection of these cryptic wetlands, we developed the Wetland Intrinsic Potential (WIP) tool, based on a wetland-indicator framework commonly used on the ground to detect wetlands through the presence of hydrophytic vegetation, hydrology, and hydric soils. Our tool uses a random forest model with spatially explicit input variables that represent all three wetland indicators, including novel multi-scale topographic indicators that represent the processes that drive wetland formation, to derive a map of wetland probability. With the ability to include multi-scale topographic indicators that help identify cryptic wetlands, the WIP tool can identify areas conducive to wetland formation while providing a flexible approach that can be adapted to diverse landscapes. For a study area in the Hoh River watershed in western Washington, USA, classification of the output probability with a threshold of 0.5 provided an overall accuracy of 91.97 %. Compared to the National Wetlands Inventory, the classified WIP tool output identified over 2 times the wetland area and reduced errors of omission from 47.5 % to 14.1 % but increased errors of commission from 1.9 % to 10.5 %. The WIP tool is implemented as an ArcGIS toolbox using a combination of R and Python scripts.
期刊介绍:
Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.