BGG 类别的狄拉克同调 O

Pub Date : 2024-03-01 DOI:10.1016/j.indag.2023.11.001
Spyridon Afentoulidis-Almpanis
{"title":"BGG 类别的狄拉克同调 O","authors":"Spyridon Afentoulidis-Almpanis","doi":"10.1016/j.indag.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study Dirac cohomology </span><span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> for modules belonging to category <span><math><mi>O</mi></math></span><span> of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of </span><span><math><mrow><mi>M</mi><mo>⊗</mo><mi>S</mi></mrow></math></span>, with <span><math><mi>S</mi></math></span> being a spin module of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>. As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> while we show that in the case of a Hermitian symmetric pair <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and an irreducible unitary module <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in <span><math><mi>M</mi></math></span>. In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac cohomology for the BGG category O\",\"authors\":\"Spyridon Afentoulidis-Almpanis\",\"doi\":\"10.1016/j.indag.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study Dirac cohomology </span><span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> for modules belonging to category <span><math><mi>O</mi></math></span><span> of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of </span><span><math><mrow><mi>M</mi><mo>⊗</mo><mi>S</mi></mrow></math></span>, with <span><math><mi>S</mi></math></span> being a spin module of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>. As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> while we show that in the case of a Hermitian symmetric pair <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and an irreducible unitary module <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in <span><math><mi>M</mi></math></span>. In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723001003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究属于有限维复半简单李代数范畴 O 的模块的狄拉克同调 HDg,h(M)。我们首先研究 M⊗S 的广义无穷小特征分解,其中 S 是 h⊥ 的自旋模。因此,"沃根猜想 "成立,我们证明了 HDg,h(M)的非消失结果,同时证明了在赫尔墨斯对称对(g,k)和不可还原单元模块 M∈O 的情况下,狄拉克同调与系数在 M 中的无穷烈代数同调重合。在最后一部分,我们将证明潘季奇和索姆伯格引入的高阶狄拉克同调和索引满足 M∈O 的良好同调性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Dirac cohomology for the BGG category O

We study Dirac cohomology HDg,h(M) for modules belonging to category O of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of MS, with S being a spin module of h. As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for HDg,h(M) while we show that in the case of a Hermitian symmetric pair (g,k) and an irreducible unitary module MO, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in M. In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for MO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信