{"title":"BGG 类别的狄拉克同调 O","authors":"Spyridon Afentoulidis-Almpanis","doi":"10.1016/j.indag.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study Dirac cohomology </span><span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> for modules belonging to category <span><math><mi>O</mi></math></span><span> of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of </span><span><math><mrow><mi>M</mi><mo>⊗</mo><mi>S</mi></mrow></math></span>, with <span><math><mi>S</mi></math></span> being a spin module of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>. As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> while we show that in the case of a Hermitian symmetric pair <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and an irreducible unitary module <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in <span><math><mi>M</mi></math></span>. In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 205-229"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirac cohomology for the BGG category O\",\"authors\":\"Spyridon Afentoulidis-Almpanis\",\"doi\":\"10.1016/j.indag.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study Dirac cohomology </span><span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> for modules belonging to category <span><math><mi>O</mi></math></span><span> of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of </span><span><math><mrow><mi>M</mi><mo>⊗</mo><mi>S</mi></mrow></math></span>, with <span><math><mi>S</mi></math></span> being a spin module of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>. As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> while we show that in the case of a Hermitian symmetric pair <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and an irreducible unitary module <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in <span><math><mi>M</mi></math></span>. In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 2\",\"pages\":\"Pages 205-229\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357723001003\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究属于有限维复半简单李代数范畴 O 的模块的狄拉克同调 HDg,h(M)。我们首先研究 M⊗S 的广义无穷小特征分解,其中 S 是 h⊥ 的自旋模。因此,"沃根猜想 "成立,我们证明了 HDg,h(M)的非消失结果,同时证明了在赫尔墨斯对称对(g,k)和不可还原单元模块 M∈O 的情况下,狄拉克同调与系数在 M 中的无穷烈代数同调重合。在最后一部分,我们将证明潘季奇和索姆伯格引入的高阶狄拉克同调和索引满足 M∈O 的良好同调性质。
We study Dirac cohomology for modules belonging to category of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of , with being a spin module of . As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for while we show that in the case of a Hermitian symmetric pair and an irreducible unitary module , Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in . In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.