特征2中$\mathbf{A}^{4}/A_{4}$的渐进解析

Pub Date : 2023-11-01 DOI:10.3792/pjaa.99.014
Linghu Fan
{"title":"特征2中$\\mathbf{A}^{4}/A_{4}$的渐进解析","authors":"Linghu Fan","doi":"10.3792/pjaa.99.014","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a crepant resolution for the quotient singularity $\\mathbf{A}^{4}/A_{4}$ in characteristic 2, where $A_{4}$ is the alternating group of degree 4 with permutation action on $\\mathbf{A}^{4}$. By computing the Euler number of the crepant resolution, we obtain a new counterexample to an analogous statement of McKay correspondence in positive characteristic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crepant resolution of $\\\\mathbf{A}^{4}/A_{4}$ in characteristic 2\",\"authors\":\"Linghu Fan\",\"doi\":\"10.3792/pjaa.99.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a crepant resolution for the quotient singularity $\\\\mathbf{A}^{4}/A_{4}$ in characteristic 2, where $A_{4}$ is the alternating group of degree 4 with permutation action on $\\\\mathbf{A}^{4}$. By computing the Euler number of the crepant resolution, we obtain a new counterexample to an analogous statement of McKay correspondence in positive characteristic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.99.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3792/pjaa.99.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了特征2中商奇点$\mathbf{a}^{4}/A_{4}$的渐增分解,其中$A_{4}$是$\mathbf{a}^{4}$上具有置换作用的4次交替群。通过计算蠕变分解的欧拉数,得到了正特征上McKay对应的一个类似命题的一个新的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Crepant resolution of $\mathbf{A}^{4}/A_{4}$ in characteristic 2
In this paper, we construct a crepant resolution for the quotient singularity $\mathbf{A}^{4}/A_{4}$ in characteristic 2, where $A_{4}$ is the alternating group of degree 4 with permutation action on $\mathbf{A}^{4}$. By computing the Euler number of the crepant resolution, we obtain a new counterexample to an analogous statement of McKay correspondence in positive characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信