SiO2 /TiO2介质Bragg反射器对1- xgaxasyp1 -y 1.55µm VCSEL本征频率的研究

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Missoum, N. G. Sabri, M. Daoudi, H. Guedaouria, A. Benamara
{"title":"SiO2 /TiO2介质Bragg反射器对1- xgaxasyp1 -y 1.55µm VCSEL本征频率的研究","authors":"A. Missoum, N. G. Sabri, M. Daoudi, H. Guedaouria, A. Benamara","doi":"10.15251/jor.2023.196.607","DOIUrl":null,"url":null,"abstract":"In this work, we focused on investigating the eigen frequency and internal standing wave characteristics of a vertical surface cavity emitting laser operating at a wavelength of 1.55 µm. The design of the cavity involved determining the cavity length, selecting the material for the cavity spacer, and carefully placing the quantum wells within the cavity to achieve maximum overlap with the electric field. In our case, the choice of the dielectric Bragg mirror with SiO2/TiO2 layers helps in achieving high reflectivity and low optical losses. The quantum wells are strategically placed within the cavity to ensure maximum overlap with the electric field. This allows for efficient carrier injection and recombination, leading to laser emission. The specific composition of the quantum wells, In0.54Ga0.46As0.99P0.01 / In0.75Ga0.25As0.55P0.45, indicates the proportions of indium (In), gallium (Ga), arsenic (As), and phosphorus (P) in the material. These compositions are chosen to achieve the desired electronic band structure and emission wavelength. By studying the eigen frequency and internal standing waves in our designed laser cavity, our aim is to understand the resonant modes and behavior of light within the device. This knowledge is crucial for optimizing the laser's performance and improving its efficiency for various applications.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of eigen frequency In1-xGaxAsyP1-y 1.55 µm VCSEL with SiO2 /TiO2 dielectric Bragg reflector\",\"authors\":\"A. Missoum, N. G. Sabri, M. Daoudi, H. Guedaouria, A. Benamara\",\"doi\":\"10.15251/jor.2023.196.607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focused on investigating the eigen frequency and internal standing wave characteristics of a vertical surface cavity emitting laser operating at a wavelength of 1.55 µm. The design of the cavity involved determining the cavity length, selecting the material for the cavity spacer, and carefully placing the quantum wells within the cavity to achieve maximum overlap with the electric field. In our case, the choice of the dielectric Bragg mirror with SiO2/TiO2 layers helps in achieving high reflectivity and low optical losses. The quantum wells are strategically placed within the cavity to ensure maximum overlap with the electric field. This allows for efficient carrier injection and recombination, leading to laser emission. The specific composition of the quantum wells, In0.54Ga0.46As0.99P0.01 / In0.75Ga0.25As0.55P0.45, indicates the proportions of indium (In), gallium (Ga), arsenic (As), and phosphorus (P) in the material. These compositions are chosen to achieve the desired electronic band structure and emission wavelength. By studying the eigen frequency and internal standing waves in our designed laser cavity, our aim is to understand the resonant modes and behavior of light within the device. This knowledge is crucial for optimizing the laser's performance and improving its efficiency for various applications.\",\"PeriodicalId\":49156,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2023.196.607\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.196.607","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们重点研究了工作波长为1.55 μ m的垂直表面腔发射激光器的本征频率和内驻波特性。空腔的设计包括确定空腔长度,选择用于空腔间隔的材料,并仔细地将量子阱放置在腔内以实现与电场的最大重叠。在我们的案例中,选择具有SiO2/TiO2层的介质布拉格反射镜有助于实现高反射率和低光学损耗。量子阱被战略性地放置在腔内,以确保与电场的最大重叠。这允许有效的载流子注入和重组,导致激光发射。量子阱的具体组成In0.54Ga0.46As0.99P0.01 / In0.75Ga0.25As0.55P0.45表明了材料中铟(In)、镓(Ga)、砷(As)和磷(P)的比例。选择这些组合物以获得所需的电子能带结构和发射波长。通过研究我们设计的激光腔内的本征频率和内部驻波,我们的目的是了解器件内光的共振模式和行为。这些知识对于优化激光器的性能和提高各种应用的效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of eigen frequency In1-xGaxAsyP1-y 1.55 µm VCSEL with SiO2 /TiO2 dielectric Bragg reflector
In this work, we focused on investigating the eigen frequency and internal standing wave characteristics of a vertical surface cavity emitting laser operating at a wavelength of 1.55 µm. The design of the cavity involved determining the cavity length, selecting the material for the cavity spacer, and carefully placing the quantum wells within the cavity to achieve maximum overlap with the electric field. In our case, the choice of the dielectric Bragg mirror with SiO2/TiO2 layers helps in achieving high reflectivity and low optical losses. The quantum wells are strategically placed within the cavity to ensure maximum overlap with the electric field. This allows for efficient carrier injection and recombination, leading to laser emission. The specific composition of the quantum wells, In0.54Ga0.46As0.99P0.01 / In0.75Ga0.25As0.55P0.45, indicates the proportions of indium (In), gallium (Ga), arsenic (As), and phosphorus (P) in the material. These compositions are chosen to achieve the desired electronic band structure and emission wavelength. By studying the eigen frequency and internal standing waves in our designed laser cavity, our aim is to understand the resonant modes and behavior of light within the device. This knowledge is crucial for optimizing the laser's performance and improving its efficiency for various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.90
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信