{"title":"热罗斯比波在恒星对流区的纬向传播","authors":"Rekha Jain, Bradley W. Hindman","doi":"10.3847/1538-4357/acfc24","DOIUrl":null,"url":null,"abstract":"Abstract Using an analytic model, we derive the eigenfrequencies for thermal Rossby waves that are trapped radially and latitudinally in an isentropically stratified atmosphere. We ignore the star’s curvature and work in an equatorial f-plane geometry. The propagation of inertial waves is found to be sensitive to the relative direction of the wavevector to the zonal direction. Prograde propagating thermal Rossby waves are naturally trapped in the radial direction for frequencies above a critical threshold, which depends on the angle of propagation. Below the threshold frequency, there exists a continuous spectrum of prograde and retrograde inertial waves that are untrapped in an isentropic atmosphere but can be trapped by gradients in the specific entropy density. Finally, we discuss the implications of these waves on recent observations of inertial oscillations in the Sun, as well as in numerical simulations.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latitudinal Propagation of Thermal Rossby Waves in Stellar Convection Zones\",\"authors\":\"Rekha Jain, Bradley W. Hindman\",\"doi\":\"10.3847/1538-4357/acfc24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using an analytic model, we derive the eigenfrequencies for thermal Rossby waves that are trapped radially and latitudinally in an isentropically stratified atmosphere. We ignore the star’s curvature and work in an equatorial f-plane geometry. The propagation of inertial waves is found to be sensitive to the relative direction of the wavevector to the zonal direction. Prograde propagating thermal Rossby waves are naturally trapped in the radial direction for frequencies above a critical threshold, which depends on the angle of propagation. Below the threshold frequency, there exists a continuous spectrum of prograde and retrograde inertial waves that are untrapped in an isentropic atmosphere but can be trapped by gradients in the specific entropy density. Finally, we discuss the implications of these waves on recent observations of inertial oscillations in the Sun, as well as in numerical simulations.\",\"PeriodicalId\":50735,\"journal\":{\"name\":\"Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/acfc24\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfc24","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Latitudinal Propagation of Thermal Rossby Waves in Stellar Convection Zones
Abstract Using an analytic model, we derive the eigenfrequencies for thermal Rossby waves that are trapped radially and latitudinally in an isentropically stratified atmosphere. We ignore the star’s curvature and work in an equatorial f-plane geometry. The propagation of inertial waves is found to be sensitive to the relative direction of the wavevector to the zonal direction. Prograde propagating thermal Rossby waves are naturally trapped in the radial direction for frequencies above a critical threshold, which depends on the angle of propagation. Below the threshold frequency, there exists a continuous spectrum of prograde and retrograde inertial waves that are untrapped in an isentropic atmosphere but can be trapped by gradients in the specific entropy density. Finally, we discuss the implications of these waves on recent observations of inertial oscillations in the Sun, as well as in numerical simulations.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.