{"title":"基于dag的群学习:一种安全的车联网异步学习框架","authors":"Xiaoge Huang , Hongbo Yin , Qianbin Chen , Yu Zeng , Jianfeng Yao","doi":"10.1016/j.dcan.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>To provide diversified services in the intelligent transportation systems, smart vehicles will generate unprecedented amounts of data every day. Due to data security and user privacy issues, Federated Learning (FL) is considered a potential solution to ensure privacy-preserving in data sharing. However, there are still many challenges to applying the traditional synchronous FL directly in the Internet of Vehicles (IoV), such as unreliable communications and malicious attacks. In this paper, we propose a Directed Acyclic Graph (DAG) based Swarm Learning (DSL), which integrates edge computing, FL, and blockchain technologies to provide secure data sharing and model training in IoVs. To deal with the high mobility of vehicles, the dynamic vehicle association algorithm is introduced, which could optimize the connections between vehicles and road side units to improve the training efficiency. Moreover, to enhance the anti-attack property of the DSL algorithm, a malicious attack detection method is adopted, which could recognize malicious vehicles by the site confirmation rate. Furthermore, an accuracy-based reward mechanism is developed to promote vehicles to participate in the model training with honest behaviors. Finally, simulation results demonstrate that the proposed DSL algorithm could achieve better performance in terms of model accuracy, convergence rates and security compared with existing algorithms.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1611-1621"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAG-based swarm learning: A secure asynchronous learning framework for Internet of Vehicles\",\"authors\":\"Xiaoge Huang , Hongbo Yin , Qianbin Chen , Yu Zeng , Jianfeng Yao\",\"doi\":\"10.1016/j.dcan.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To provide diversified services in the intelligent transportation systems, smart vehicles will generate unprecedented amounts of data every day. Due to data security and user privacy issues, Federated Learning (FL) is considered a potential solution to ensure privacy-preserving in data sharing. However, there are still many challenges to applying the traditional synchronous FL directly in the Internet of Vehicles (IoV), such as unreliable communications and malicious attacks. In this paper, we propose a Directed Acyclic Graph (DAG) based Swarm Learning (DSL), which integrates edge computing, FL, and blockchain technologies to provide secure data sharing and model training in IoVs. To deal with the high mobility of vehicles, the dynamic vehicle association algorithm is introduced, which could optimize the connections between vehicles and road side units to improve the training efficiency. Moreover, to enhance the anti-attack property of the DSL algorithm, a malicious attack detection method is adopted, which could recognize malicious vehicles by the site confirmation rate. Furthermore, an accuracy-based reward mechanism is developed to promote vehicles to participate in the model training with honest behaviors. Finally, simulation results demonstrate that the proposed DSL algorithm could achieve better performance in terms of model accuracy, convergence rates and security compared with existing algorithms.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 6\",\"pages\":\"Pages 1611-1621\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001578\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001578","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
DAG-based swarm learning: A secure asynchronous learning framework for Internet of Vehicles
To provide diversified services in the intelligent transportation systems, smart vehicles will generate unprecedented amounts of data every day. Due to data security and user privacy issues, Federated Learning (FL) is considered a potential solution to ensure privacy-preserving in data sharing. However, there are still many challenges to applying the traditional synchronous FL directly in the Internet of Vehicles (IoV), such as unreliable communications and malicious attacks. In this paper, we propose a Directed Acyclic Graph (DAG) based Swarm Learning (DSL), which integrates edge computing, FL, and blockchain technologies to provide secure data sharing and model training in IoVs. To deal with the high mobility of vehicles, the dynamic vehicle association algorithm is introduced, which could optimize the connections between vehicles and road side units to improve the training efficiency. Moreover, to enhance the anti-attack property of the DSL algorithm, a malicious attack detection method is adopted, which could recognize malicious vehicles by the site confirmation rate. Furthermore, an accuracy-based reward mechanism is developed to promote vehicles to participate in the model training with honest behaviors. Finally, simulation results demonstrate that the proposed DSL algorithm could achieve better performance in terms of model accuracy, convergence rates and security compared with existing algorithms.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.