关于非厄米随机矩阵的最右特征值

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Giorgio Cipolloni, László Erdős, Dominik Schröder, Yuanyuan Xu
{"title":"关于非厄米随机矩阵的最右特征值","authors":"Giorgio Cipolloni, László Erdős, Dominik Schröder, Yuanyuan Xu","doi":"10.1214/23-aop1643","DOIUrl":null,"url":null,"abstract":"We establish a precise three-term asymptotic expansion, with an optimal estimate of the error term, for the rightmost eigenvalue of an n×n random matrix with independent identically distributed complex entries as n tends to infinity. All terms in the expansion are universal.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the rightmost eigenvalue of non-Hermitian random matrices\",\"authors\":\"Giorgio Cipolloni, László Erdős, Dominik Schröder, Yuanyuan Xu\",\"doi\":\"10.1214/23-aop1643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a precise three-term asymptotic expansion, with an optimal estimate of the error term, for the rightmost eigenvalue of an n×n random matrix with independent identically distributed complex entries as n tends to infinity. All terms in the expansion are universal.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aop1643\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aop1643","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

我们建立了一个精确的三项渐近展开式,具有误差项的最优估计,当n趋于无穷时,具有独立同分布复项的n×n随机矩阵的最右特征值。展开式中的所有项都是普遍的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the rightmost eigenvalue of non-Hermitian random matrices
We establish a precise three-term asymptotic expansion, with an optimal estimate of the error term, for the rightmost eigenvalue of an n×n random matrix with independent identically distributed complex entries as n tends to infinity. All terms in the expansion are universal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信