粘性冲击与标量守恒律的长时间行为

IF 1 3区 数学 Q1 MATHEMATICS
Thierry Gallay, Arnd Scheel
{"title":"粘性冲击与标量守恒律的长时间行为","authors":"Thierry Gallay, Arnd Scheel","doi":"10.3934/cpaa.2023119","DOIUrl":null,"url":null,"abstract":"We study the long-time behavior of scalar viscous conservation laws via the structure of $ \\omega $-limit sets. We show that $ \\omega $-limit sets always contain constants or shocks by establishing convergence to shocks for arbitrary monotone initial data. In the particular case of Burgers' equation, we review and refine results that parametrize entire solutions in terms of probability measures, and we construct initial data for which the $ \\omega $-limit set is not reduced to the translates of a single shock. Finally we propose several open problems related to the description of long-time dynamics.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscous shocks and long-time behavior of scalar conservation laws\",\"authors\":\"Thierry Gallay, Arnd Scheel\",\"doi\":\"10.3934/cpaa.2023119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the long-time behavior of scalar viscous conservation laws via the structure of $ \\\\omega $-limit sets. We show that $ \\\\omega $-limit sets always contain constants or shocks by establishing convergence to shocks for arbitrary monotone initial data. In the particular case of Burgers' equation, we review and refine results that parametrize entire solutions in terms of probability measures, and we construct initial data for which the $ \\\\omega $-limit set is not reduced to the translates of a single shock. Finally we propose several open problems related to the description of long-time dynamics.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023119\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过极限集的结构研究了标量粘性守恒律的长时间行为。通过建立对任意单调初始数据的收敛性,证明了$ \ ω $-极限集总是包含常数或激波。在Burgers方程的特殊情况下,我们回顾并完善了根据概率度量参数化整个解决方案的结果,并且我们构建了初始数据,其中$ \omega $-极限集没有被简化为单个冲击的转换。最后,我们提出了几个与长时间动力学描述有关的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viscous shocks and long-time behavior of scalar conservation laws
We study the long-time behavior of scalar viscous conservation laws via the structure of $ \omega $-limit sets. We show that $ \omega $-limit sets always contain constants or shocks by establishing convergence to shocks for arbitrary monotone initial data. In the particular case of Burgers' equation, we review and refine results that parametrize entire solutions in terms of probability measures, and we construct initial data for which the $ \omega $-limit set is not reduced to the translates of a single shock. Finally we propose several open problems related to the description of long-time dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信