具有Navier边界条件的非平稳Stokes系统的梯度估计

IF 1 3区 数学 Q1 MATHEMATICS
Hui Chen, Su Liang, Tai-Peng Tsai
{"title":"具有Navier边界条件的非平稳Stokes系统的梯度估计","authors":"Hui Chen, Su Liang, Tai-Peng Tsai","doi":"10.3934/cpaa.2023120","DOIUrl":null,"url":null,"abstract":"For the non-stationary Stokes system, it is well-known that one can improve spatial regularity in the interior, but not near the boundary if it is coupled with the no-slip boundary condition. In this note we show that, to the contrary, spatial regularity can be improved near a flat boundary if it is coupled with the Navier boundary condition, with either infinite or finite slip length. The case with finite slip length is more difficult than the case with infinite slip length.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"119 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient estimates for the non-stationary Stokes system with the Navier boundary condition\",\"authors\":\"Hui Chen, Su Liang, Tai-Peng Tsai\",\"doi\":\"10.3934/cpaa.2023120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the non-stationary Stokes system, it is well-known that one can improve spatial regularity in the interior, but not near the boundary if it is coupled with the no-slip boundary condition. In this note we show that, to the contrary, spatial regularity can be improved near a flat boundary if it is coupled with the Navier boundary condition, with either infinite or finite slip length. The case with finite slip length is more difficult than the case with infinite slip length.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023120\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于非平稳Stokes系统,众所周知,如果与无滑移边界条件相结合,可以在内部改善空间规则性,但在边界附近却不能。在这篇笔记中,我们表明,相反,如果与无限或有限滑移长度的Navier边界条件耦合,则在平坦边界附近的空间正则性可以得到改善。有限滑移长度的情况比无限滑移长度的情况更困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient estimates for the non-stationary Stokes system with the Navier boundary condition
For the non-stationary Stokes system, it is well-known that one can improve spatial regularity in the interior, but not near the boundary if it is coupled with the no-slip boundary condition. In this note we show that, to the contrary, spatial regularity can be improved near a flat boundary if it is coupled with the Navier boundary condition, with either infinite or finite slip length. The case with finite slip length is more difficult than the case with infinite slip length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信