U-Net变量在息肉图像分割中的比较

Amelia Ritahani Ismail, Syed Qamrun Nisa
{"title":"U-Net变量在息肉图像分割中的比较","authors":"Amelia Ritahani Ismail, Syed Qamrun Nisa","doi":"10.31436/ijpcc.v9i2.408","DOIUrl":null,"url":null,"abstract":"Medical image analysis involves examining pictures acquired by medical imaging technologies in order to address clinical issues. The aim is to increase the quality of clinical diagnosis and extract useful information. Automatic segmentation based on deep learning (DL) techniques has gained popularity recently. In contrast to the conventional manual learning method, a neural network can now automatically learn image features. One of the most crucial convolutional neural network (CNN) semantic segmentation frameworks is U-net. It is frequently used for classification, anatomical segmentation, and lesion segmentation in the field of medical image analysis. This network framework's benefit is that it not only effectively processes and objectively evaluates medical images, properly segments the desired feature target, and helps to increase the accuracy of medical image-based diagnosis.","PeriodicalId":164524,"journal":{"name":"International Journal on Perceptive and Cognitive Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of U-Net’s Variants for Segmentation of Polyp Images\",\"authors\":\"Amelia Ritahani Ismail, Syed Qamrun Nisa\",\"doi\":\"10.31436/ijpcc.v9i2.408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical image analysis involves examining pictures acquired by medical imaging technologies in order to address clinical issues. The aim is to increase the quality of clinical diagnosis and extract useful information. Automatic segmentation based on deep learning (DL) techniques has gained popularity recently. In contrast to the conventional manual learning method, a neural network can now automatically learn image features. One of the most crucial convolutional neural network (CNN) semantic segmentation frameworks is U-net. It is frequently used for classification, anatomical segmentation, and lesion segmentation in the field of medical image analysis. This network framework's benefit is that it not only effectively processes and objectively evaluates medical images, properly segments the desired feature target, and helps to increase the accuracy of medical image-based diagnosis.\",\"PeriodicalId\":164524,\"journal\":{\"name\":\"International Journal on Perceptive and Cognitive Computing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Perceptive and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31436/ijpcc.v9i2.408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Perceptive and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/ijpcc.v9i2.408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学图像分析包括检查通过医学成像技术获得的图像,以解决临床问题。目的是提高临床诊断的质量和提取有用的信息。近年来,基于深度学习(DL)的自动分割技术得到了广泛的应用。与传统的人工学习方法相比,神经网络现在可以自动学习图像特征。卷积神经网络(CNN)语义分割框架中最重要的一个是U-net。在医学图像分析领域,它经常被用于分类、解剖分割和病灶分割。该网络框架的优点在于能够有效地对医学图像进行处理和客观评价,正确分割期望的特征目标,有助于提高基于医学图像的诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of U-Net’s Variants for Segmentation of Polyp Images
Medical image analysis involves examining pictures acquired by medical imaging technologies in order to address clinical issues. The aim is to increase the quality of clinical diagnosis and extract useful information. Automatic segmentation based on deep learning (DL) techniques has gained popularity recently. In contrast to the conventional manual learning method, a neural network can now automatically learn image features. One of the most crucial convolutional neural network (CNN) semantic segmentation frameworks is U-net. It is frequently used for classification, anatomical segmentation, and lesion segmentation in the field of medical image analysis. This network framework's benefit is that it not only effectively processes and objectively evaluates medical images, properly segments the desired feature target, and helps to increase the accuracy of medical image-based diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信