帕多万数序列中的乘法相关对

Pub Date : 2023-10-01 DOI:10.1515/ms-2023-0083
Mitashree Behera, Prasanta Kumar Ray
{"title":"帕多万数序列中的乘法相关对","authors":"Mitashree Behera, Prasanta Kumar Ray","doi":"10.1515/ms-2023-0083","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Padovan sequence { P n } n ≥0 is a ternary recurrent sequence defined recursively by the relation P n = P n –2 + P n –3 with initials P 0 = P 1 = P 2 = 1. In this note, we search all pairs of multiplicative dependent vectors whose coordinates are Padovan numbers. For this purpose, we apply Matveev’s theorem to find the lower bounds of the non-zero linear forms in logarithms. Techniques involving the LLL algorithm and the theory of continued fraction are utilized to reduce the bounds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Dependent Pairs in the Sequence of Padovan Numbers\",\"authors\":\"Mitashree Behera, Prasanta Kumar Ray\",\"doi\":\"10.1515/ms-2023-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The Padovan sequence { P n } n ≥0 is a ternary recurrent sequence defined recursively by the relation P n = P n –2 + P n –3 with initials P 0 = P 1 = P 2 = 1. In this note, we search all pairs of multiplicative dependent vectors whose coordinates are Padovan numbers. For this purpose, we apply Matveev’s theorem to find the lower bounds of the non-zero linear forms in logarithms. Techniques involving the LLL algorithm and the theory of continued fraction are utilized to reduce the bounds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

帕多万序列{pn} n≥0是一个由pn = pn -2 + pn -3的关系递归定义的三元循环序列,首字母P 0 = p1 = p2 = 1。在本文中,我们搜索坐标为帕多万数的所有乘法相关向量对。为此,我们应用Matveev定理来求对数非零线性形式的下界。利用LLL算法和连分式理论来降低边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiplicative Dependent Pairs in the Sequence of Padovan Numbers
ABSTRACT The Padovan sequence { P n } n ≥0 is a ternary recurrent sequence defined recursively by the relation P n = P n –2 + P n –3 with initials P 0 = P 1 = P 2 = 1. In this note, we search all pairs of multiplicative dependent vectors whose coordinates are Padovan numbers. For this purpose, we apply Matveev’s theorem to find the lower bounds of the non-zero linear forms in logarithms. Techniques involving the LLL algorithm and the theory of continued fraction are utilized to reduce the bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信