{"title":"半度量空间中Bi-Lipschitz等价度量的存在性","authors":"Andrea Orazio Caruso, Vincenzo Palmisano","doi":"10.1515/ms-2023-0093","DOIUrl":null,"url":null,"abstract":"ABSTRACT We provide an overview of the known problem on the existence of a bi-Lipschitz equivalent metric with respect to a given quasi-ultrametric, revisiting known results and counterexamples in an unified approach based on the existence of a relaxed polygonal inequality. We present new proofs and characterizations of classical results using different techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces\",\"authors\":\"Andrea Orazio Caruso, Vincenzo Palmisano\",\"doi\":\"10.1515/ms-2023-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We provide an overview of the known problem on the existence of a bi-Lipschitz equivalent metric with respect to a given quasi-ultrametric, revisiting known results and counterexamples in an unified approach based on the existence of a relaxed polygonal inequality. We present new proofs and characterizations of classical results using different techniques.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces
ABSTRACT We provide an overview of the known problem on the existence of a bi-Lipschitz equivalent metric with respect to a given quasi-ultrametric, revisiting known results and counterexamples in an unified approach based on the existence of a relaxed polygonal inequality. We present new proofs and characterizations of classical results using different techniques.