{"title":"有向部分标志流形的有理零因子杯长","authors":"Vimala Ramani","doi":"10.1515/ms-2023-0097","DOIUrl":null,"url":null,"abstract":"ABSTRACT We compute the rational zero-divisor cup-length of the oriented partial flag manifold <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:mover accent=\"true\"> <m:mi>F</m:mi> <m:mo stretchy=\"true\">˜</m:mo> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mi>n</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:msub> <m:mi>n</m:mi> <m:mi>k</m:mi> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> \\[\\widetilde{F}\\left( {{n}_{1}},\\ldots,{{n}_{k}} \\right)\\] of type ( n 1 ,…, n k ), k ≥ 2. For certain classes of oriented partial flag manifolds, we compare the rational zero-divisor cup-length and the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"> <m:mrow> <m:msub> <m:mi>ℤ</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:math> \\[{{\\mathbb{Z}}_{2}}\\] -zero-divisor cup-length.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds\",\"authors\":\"Vimala Ramani\",\"doi\":\"10.1515/ms-2023-0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We compute the rational zero-divisor cup-length of the oriented partial flag manifold <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mi>F</m:mi> <m:mo stretchy=\\\"true\\\">˜</m:mo> </m:mover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mi>n</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:msub> <m:mi>n</m:mi> <m:mi>k</m:mi> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> \\\\[\\\\widetilde{F}\\\\left( {{n}_{1}},\\\\ldots,{{n}_{k}} \\\\right)\\\\] of type ( n 1 ,…, n k ), k ≥ 2. For certain classes of oriented partial flag manifolds, we compare the rational zero-divisor cup-length and the <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"> <m:mrow> <m:msub> <m:mi>ℤ</m:mi> <m:mn>2</m:mn> </m:msub> </m:mrow> </m:math> \\\\[{{\\\\mathbb{Z}}_{2}}\\\\] -zero-divisor cup-length.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Rational Zero-Divisor Cup-Length of Oriented Partial Flag Manifolds
ABSTRACT We compute the rational zero-divisor cup-length of the oriented partial flag manifold F˜(n1,…,nk) \[\widetilde{F}\left( {{n}_{1}},\ldots,{{n}_{k}} \right)\] of type ( n 1 ,…, n k ), k ≥ 2. For certain classes of oriented partial flag manifolds, we compare the rational zero-divisor cup-length and the ℤ2 \[{{\mathbb{Z}}_{2}}\] -zero-divisor cup-length.