{"title":"使用氮化镓场效应晶体管的皮秒和高功率紫外/可见光脉冲:实现和设计评估","authors":"F. Henningsen, N. Braam, M. Danninger","doi":"10.1088/1748-0221/18/10/p10010","DOIUrl":null,"url":null,"abstract":"Abstract This paper discusses the development of cost-effective and high-performance picosecond and high-power light pulsers. The use of innovative gallium nitride field-effect transistor technology, in combination with meticulous electronic design and careful selection of light-emitting diodes or laser diodes for ultraviolet and visible spectral ranges, has resulted in superior characteristics compared to commonly used designs. The sub-ns design achieves pulse widths as low as 300 ps, with photon outputs ranging between 10 4 -10 9 photons per pulse, over a wavelength range of 235-470 nm. Meanwhile, the high-power design achieves pulse widths as low as 1.8 ns, with photon outputs ranging between 10 7 -10 11 photons per pulse, and a wavelength range of 375-525 nm. The two designs complement each other in photon outputs, covering a dynamic range of almost ten orders of magnitude. This paper provides an evaluation of the electrical design and emitter selection of both pulsers, as well as their electrical and optical performance.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"60 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picosecond and high-power UV/Vis light pulsing using gallium nitride field-effect transistors: implementation and design evaluation\",\"authors\":\"F. Henningsen, N. Braam, M. Danninger\",\"doi\":\"10.1088/1748-0221/18/10/p10010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper discusses the development of cost-effective and high-performance picosecond and high-power light pulsers. The use of innovative gallium nitride field-effect transistor technology, in combination with meticulous electronic design and careful selection of light-emitting diodes or laser diodes for ultraviolet and visible spectral ranges, has resulted in superior characteristics compared to commonly used designs. The sub-ns design achieves pulse widths as low as 300 ps, with photon outputs ranging between 10 4 -10 9 photons per pulse, over a wavelength range of 235-470 nm. Meanwhile, the high-power design achieves pulse widths as low as 1.8 ns, with photon outputs ranging between 10 7 -10 11 photons per pulse, and a wavelength range of 375-525 nm. The two designs complement each other in photon outputs, covering a dynamic range of almost ten orders of magnitude. This paper provides an evaluation of the electrical design and emitter selection of both pulsers, as well as their electrical and optical performance.\",\"PeriodicalId\":16184,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/18/10/p10010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/p10010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Picosecond and high-power UV/Vis light pulsing using gallium nitride field-effect transistors: implementation and design evaluation
Abstract This paper discusses the development of cost-effective and high-performance picosecond and high-power light pulsers. The use of innovative gallium nitride field-effect transistor technology, in combination with meticulous electronic design and careful selection of light-emitting diodes or laser diodes for ultraviolet and visible spectral ranges, has resulted in superior characteristics compared to commonly used designs. The sub-ns design achieves pulse widths as low as 300 ps, with photon outputs ranging between 10 4 -10 9 photons per pulse, over a wavelength range of 235-470 nm. Meanwhile, the high-power design achieves pulse widths as low as 1.8 ns, with photon outputs ranging between 10 7 -10 11 photons per pulse, and a wavelength range of 375-525 nm. The two designs complement each other in photon outputs, covering a dynamic range of almost ten orders of magnitude. This paper provides an evaluation of the electrical design and emitter selection of both pulsers, as well as their electrical and optical performance.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.