气体动力学中一种新型稳定激波形成

IF 1 3区 数学 Q1 MATHEMATICS
Isaac Neal, Calum Rickard, Steve Shkoller, Vlad Vicol
{"title":"气体动力学中一种新型稳定激波形成","authors":"Isaac Neal, Calum Rickard, Steve Shkoller, Vlad Vicol","doi":"10.3934/cpaa.2023118","DOIUrl":null,"url":null,"abstract":"From an open set of initial data, we construct a family of classical solutions to the 1D nonisentropic compressible Euler equations which form $ C^{0,\\nu} $ cusps as a first singularity, for any $ \\nu \\in [\\frac{1}{2}, 1) $. For this range of $ \\nu $, this is the first result demonstrating the stable formation of such $ C^{0,\\nu} $ cusp-type singularities, also known as pre-shocks. The proof uses a new formulation of the differentiated Euler equations along the fast acoustic characteristic, and relies on a novel set of $ L^p $ energy estimates for all $ 1<p<\\infty $, which may be of independent interest.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":"4 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new type of stable shock formation in gas dynamics\",\"authors\":\"Isaac Neal, Calum Rickard, Steve Shkoller, Vlad Vicol\",\"doi\":\"10.3934/cpaa.2023118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From an open set of initial data, we construct a family of classical solutions to the 1D nonisentropic compressible Euler equations which form $ C^{0,\\\\nu} $ cusps as a first singularity, for any $ \\\\nu \\\\in [\\\\frac{1}{2}, 1) $. For this range of $ \\\\nu $, this is the first result demonstrating the stable formation of such $ C^{0,\\\\nu} $ cusp-type singularities, also known as pre-shocks. The proof uses a new formulation of the differentiated Euler equations along the fast acoustic characteristic, and relies on a novel set of $ L^p $ energy estimates for all $ 1<p<\\\\infty $, which may be of independent interest.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2023118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

从一个开放的初始数据集,我们构造了一维非等熵可压缩欧拉方程的经典解族,这些方程形成$ C^{0,\nu} $顶点作为第一奇点,对于任何$ \nu \in [\frac{1}{2}, 1) $。对于这个$ \nu $范围,这是第一个证明这种$ C^{0,\nu} $尖型奇点(也称为预冲击)稳定形成的结果。该证明使用了沿快速声学特性的微分欧拉方程的新公式,并依赖于所有$ 1<p<\infty $的一组新的$ L^p $能量估计,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new type of stable shock formation in gas dynamics
From an open set of initial data, we construct a family of classical solutions to the 1D nonisentropic compressible Euler equations which form $ C^{0,\nu} $ cusps as a first singularity, for any $ \nu \in [\frac{1}{2}, 1) $. For this range of $ \nu $, this is the first result demonstrating the stable formation of such $ C^{0,\nu} $ cusp-type singularities, also known as pre-shocks. The proof uses a new formulation of the differentiated Euler equations along the fast acoustic characteristic, and relies on a novel set of $ L^p $ energy estimates for all $ 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信