环型变异的Verdier单态的Lefschetz数和动机单态猜想

IF 0.6 Q3 MATHEMATICS
Jen-Chieh Hsiao
{"title":"环型变异的Verdier单态的Lefschetz数和动机单态猜想","authors":"Jen-Chieh Hsiao","doi":"10.1215/00192082-10950709","DOIUrl":null,"url":null,"abstract":"We give an expression of the Lefschetz number of iterates of the Verdier monodormy associated to an ideal on a complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs. This extends the result of Denef and Loeser in the case of principal ideal on a smooth variety, and motivates a definition of motivic Milnor fiber for ideals. A discussion of the monodromy conjecture for motivic zeta functions of torus-invariant ideals on toric varieties is also included.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"35 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lefschetz numbers of Verdier monodromy and the motivic monodromy conjecture for toric varieties\",\"authors\":\"Jen-Chieh Hsiao\",\"doi\":\"10.1215/00192082-10950709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an expression of the Lefschetz number of iterates of the Verdier monodormy associated to an ideal on a complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs. This extends the result of Denef and Loeser in the case of principal ideal on a smooth variety, and motivates a definition of motivic Milnor fiber for ideals. A discussion of the monodromy conjecture for motivic zeta functions of torus-invariant ideals on toric varieties is also included.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10950709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10950709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用截断弧空间的欧拉特征给出了复代数变形体上与理想相关的Verdier单多项式的Lefschetz迭代数的表达式。这扩展了Denef和Loeser关于主理想的结果,并提出了理想的动机米尔诺纤维的定义。讨论了环面变量上环面不变理想的动机zeta函数的单性猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lefschetz numbers of Verdier monodromy and the motivic monodromy conjecture for toric varieties
We give an expression of the Lefschetz number of iterates of the Verdier monodormy associated to an ideal on a complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs. This extends the result of Denef and Loeser in the case of principal ideal on a smooth variety, and motivates a definition of motivic Milnor fiber for ideals. A discussion of the monodromy conjecture for motivic zeta functions of torus-invariant ideals on toric varieties is also included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信