{"title":"带加权Lipschitz函数的极大函数和锐函数的对易子","authors":"Zhang, Pu, Zhu, Xiaomeng","doi":"10.48550/arxiv.2307.15500","DOIUrl":null,"url":null,"abstract":"Let $M$ be the Hardy-Littlewood maximal function. Denote by $M_b$ and $[b,M]$ the maximal and the nonlinear commutators of $M$ with a function $b$. The boundedness of $M_b$ and $[b,M]$ on weighted Lebesgue spaces are characterized when the symbols $b$ belong to weighted Lipschitz spaces. Some new characterizations for weighted Lipschitz spaces are obtained. Similar results are also established for the nonlinear commutator of the sharp function.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutators of the maximal and sharp functions with weighted Lipschitz\\n functions\",\"authors\":\"Zhang, Pu, Zhu, Xiaomeng\",\"doi\":\"10.48550/arxiv.2307.15500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be the Hardy-Littlewood maximal function. Denote by $M_b$ and $[b,M]$ the maximal and the nonlinear commutators of $M$ with a function $b$. The boundedness of $M_b$ and $[b,M]$ on weighted Lebesgue spaces are characterized when the symbols $b$ belong to weighted Lipschitz spaces. Some new characterizations for weighted Lipschitz spaces are obtained. Similar results are also established for the nonlinear commutator of the sharp function.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2307.15500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2307.15500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commutators of the maximal and sharp functions with weighted Lipschitz
functions
Let $M$ be the Hardy-Littlewood maximal function. Denote by $M_b$ and $[b,M]$ the maximal and the nonlinear commutators of $M$ with a function $b$. The boundedness of $M_b$ and $[b,M]$ on weighted Lebesgue spaces are characterized when the symbols $b$ belong to weighted Lipschitz spaces. Some new characterizations for weighted Lipschitz spaces are obtained. Similar results are also established for the nonlinear commutator of the sharp function.