带加权Lipschitz函数的极大函数和锐函数的对易子

Zhang, Pu, Zhu, Xiaomeng
{"title":"带加权Lipschitz函数的极大函数和锐函数的对易子","authors":"Zhang, Pu, Zhu, Xiaomeng","doi":"10.48550/arxiv.2307.15500","DOIUrl":null,"url":null,"abstract":"Let $M$ be the Hardy-Littlewood maximal function. Denote by $M_b$ and $[b,M]$ the maximal and the nonlinear commutators of $M$ with a function $b$. The boundedness of $M_b$ and $[b,M]$ on weighted Lebesgue spaces are characterized when the symbols $b$ belong to weighted Lipschitz spaces. Some new characterizations for weighted Lipschitz spaces are obtained. Similar results are also established for the nonlinear commutator of the sharp function.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutators of the maximal and sharp functions with weighted Lipschitz\\n functions\",\"authors\":\"Zhang, Pu, Zhu, Xiaomeng\",\"doi\":\"10.48550/arxiv.2307.15500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be the Hardy-Littlewood maximal function. Denote by $M_b$ and $[b,M]$ the maximal and the nonlinear commutators of $M$ with a function $b$. The boundedness of $M_b$ and $[b,M]$ on weighted Lebesgue spaces are characterized when the symbols $b$ belong to weighted Lipschitz spaces. Some new characterizations for weighted Lipschitz spaces are obtained. Similar results are also established for the nonlinear commutator of the sharp function.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2307.15500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2307.15500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设M为Hardy-Littlewood极大函数。用$M_b$和$[b,M]$表示$M$与函数$b$的极大值和非线性对易子。当符号$b$属于加权Lipschitz空间时,刻画了$M_b$和$[b,M]$在加权Lebesgue空间上的有界性。得到了加权Lipschitz空间的一些新的表征。对于夏普函数的非线性换向器也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutators of the maximal and sharp functions with weighted Lipschitz functions
Let $M$ be the Hardy-Littlewood maximal function. Denote by $M_b$ and $[b,M]$ the maximal and the nonlinear commutators of $M$ with a function $b$. The boundedness of $M_b$ and $[b,M]$ on weighted Lebesgue spaces are characterized when the symbols $b$ belong to weighted Lipschitz spaces. Some new characterizations for weighted Lipschitz spaces are obtained. Similar results are also established for the nonlinear commutator of the sharp function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信