{"title":"钛合金与纤维增强复合牙种植体的扭矩特性及螺钉松动研究","authors":"Sambhrant Srivastava, Saroj Kumar Sarangi","doi":"10.1615/compmechcomputapplintj.2023049370","DOIUrl":null,"url":null,"abstract":"In order to determine how various materials and abutment connections react to the retightening effect of the abutment screw when saliva or blood enters the space between the abutment and the dental implant, this study used finite element techniques. Dental implant systems are created with polyether ether ketone-reinforced carbon utilizing a random sequential algorithm (RSA) that is modelled in ANSYS to understand the impact of internal-hex and conical abutment types. The abutment screw is tightened (stage 1), relaxed (stage 2), retightened (stage 3), and then relaxed (stage 4) to determine the preload value and removal torque. Internal hexagonal abutment connections and CFR-PEEK composite materials have been shown to be exceptionally good at preventing screw loosening. It is discovered that a conical connection is a poor abutment for preventing screw loosening.","PeriodicalId":42952,"journal":{"name":"Composites-Mechanics Computations Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Torque Characteristics and Screw Loosening in Titanium Alloy and Fibre-reinforced Composite Dental Implants\",\"authors\":\"Sambhrant Srivastava, Saroj Kumar Sarangi\",\"doi\":\"10.1615/compmechcomputapplintj.2023049370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to determine how various materials and abutment connections react to the retightening effect of the abutment screw when saliva or blood enters the space between the abutment and the dental implant, this study used finite element techniques. Dental implant systems are created with polyether ether ketone-reinforced carbon utilizing a random sequential algorithm (RSA) that is modelled in ANSYS to understand the impact of internal-hex and conical abutment types. The abutment screw is tightened (stage 1), relaxed (stage 2), retightened (stage 3), and then relaxed (stage 4) to determine the preload value and removal torque. Internal hexagonal abutment connections and CFR-PEEK composite materials have been shown to be exceptionally good at preventing screw loosening. It is discovered that a conical connection is a poor abutment for preventing screw loosening.\",\"PeriodicalId\":42952,\"journal\":{\"name\":\"Composites-Mechanics Computations Applications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites-Mechanics Computations Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/compmechcomputapplintj.2023049370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites-Mechanics Computations Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/compmechcomputapplintj.2023049370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Study of Torque Characteristics and Screw Loosening in Titanium Alloy and Fibre-reinforced Composite Dental Implants
In order to determine how various materials and abutment connections react to the retightening effect of the abutment screw when saliva or blood enters the space between the abutment and the dental implant, this study used finite element techniques. Dental implant systems are created with polyether ether ketone-reinforced carbon utilizing a random sequential algorithm (RSA) that is modelled in ANSYS to understand the impact of internal-hex and conical abutment types. The abutment screw is tightened (stage 1), relaxed (stage 2), retightened (stage 3), and then relaxed (stage 4) to determine the preload value and removal torque. Internal hexagonal abutment connections and CFR-PEEK composite materials have been shown to be exceptionally good at preventing screw loosening. It is discovered that a conical connection is a poor abutment for preventing screw loosening.