{"title":"基于伴复矩阵相似度的多项式零点新有效精确界","authors":"Aliaa Burqan, Ahmad Alsawaftah, Zeyad Al-Zhour","doi":"10.2298/fil2309961b","DOIUrl":null,"url":null,"abstract":"In this paper, we present new bounds for the zeros of polynomials with numerical and matrix coefficients and show that these bounds are effective and more accurate for polynomials that have small differences between their coefficients. To get our main results, we apply the similarity of matrices and matrix inequalities including the numerical radius and matrix norms. Finally, some illustrated examples are given and discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New efficient and accurate bounds for zeros of a polynomial based on similarity of companion complex matrices\",\"authors\":\"Aliaa Burqan, Ahmad Alsawaftah, Zeyad Al-Zhour\",\"doi\":\"10.2298/fil2309961b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present new bounds for the zeros of polynomials with numerical and matrix coefficients and show that these bounds are effective and more accurate for polynomials that have small differences between their coefficients. To get our main results, we apply the similarity of matrices and matrix inequalities including the numerical radius and matrix norms. Finally, some illustrated examples are given and discussed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2309961b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fil2309961b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New efficient and accurate bounds for zeros of a polynomial based on similarity of companion complex matrices
In this paper, we present new bounds for the zeros of polynomials with numerical and matrix coefficients and show that these bounds are effective and more accurate for polynomials that have small differences between their coefficients. To get our main results, we apply the similarity of matrices and matrix inequalities including the numerical radius and matrix norms. Finally, some illustrated examples are given and discussed.